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Abstract The smart grid is emerging as an efficient paradigm for electric power generation,
transmission, and consumption, based on optimized decisionmaking and control that leverage
the measurement data of sensors and meters in the grid. False data injection is a new type of
power grid attacks aiming to tamper such important data. For the security and robustness of
the grid, it is critical to separate the false data injected by such attacks and recover the original
measurement data. Nonetheless, the existing approaches often neglect the true changes on
original measurement data that are caused by the real perturbations on grid states and hence
have a risk of removing these true changes as injected false data during the data recovery.
In this paper, we preserve these true changes by modeling the false data problem as a rank-
bounded L1 norm optimization and propose both offline and online algorithms to filter out the
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injected false data and recover original measurement data. Trace-driven simulations verify
the efficacy of our solution.

Keywords False data separation · Data recovery · Data security · Optimization · Grassmann
manifold

1 Introduction

In a modern smart grid, as illustrated in Fig. 1, electricity is produced in generating plants
and transmitted to power stations via transmission lines. Following voltage reduction at
distribution stations, electricity is further carried to customers through a distribution network.
To ensure the security of such a power grid, decision-making units as exemplified by the
Energy Control Center (ECC) require accurate, up-to-date information on the grid states,
including voltage profiles, current of power flows, grid frequency evolvement, and load
profiles. To this end, ECC collects these state information through the Supervisory Control
and Data Acquisition (SCADA) system [1], which monitors the grid by taking a set of
measurements every several seconds or minutes for current grid state. State estimator in the
control center estimates the grid states through analysis of collected measurement data and
power system models, where bad data caused by measurement noise/error and malicious
attacks are filtered out.

The wide adoption of digital control and communication technologies provides smart grid
operators unprecedentedly abundant information on the status of devices in a power grid.
However, such information collection and transmission, including smart meter deployment,
are often based on Internet technologies and broadband communications that are prone to
security attacks. The US power grid has reportedly fallen victim to cyber intrusions in the
past [17]. Even if state estimators work appropriately and provide an accurate snapshot of
the grid’s health status, the measurement data collected by ECC are still prone to attacks by
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Fig. 1 Cyber-physical infrastructure of a smart grid
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Fig. 2 An illustration of false data injection attack in a 5-bus system: An attacker may distort meter reading
to mislead the control center

malicious users, often with strong economic or political motivations. Attackers may hack
meters in the grid and manipulate them to conduct false data injection attacks, polluting the
data collected by ECC. Figure 2 illustrates an example of false data injection attacks.

This work aims to separate the injected false data from original real measurement data.
In the grid, the measurement data collected by ECC from meters in each time slot form a
measurement vector. The measurement vectors over multiple time slots form ameasurement
matrix. The real measurement matrix is often subject to intrinsic temporal correlation of grid
states [13] and measurement topology [6]. The spatial correlation of power sources and loads
further increases the correlation among real measurement vectors [14]. Such high correlation
across measurement vectors leads to a low-rank structure of the real measurement matrix. On
the other hand, the injected false data matrix over time is sparse, since an attacker often has
limited access to resources that are necessary to compromise a large number of measurement
and transmission units. Therefore, the measurement matrix observed at ECC is usually the
sum of a low-rank real measurement matrix and a sparse malicious data matrix. Given this
conclusion, most of the existing work formulated the problem of false data separation as an
optimization problem of minimizing the rank of the real measurement matrix and the L0

norm (i.e., the number of nonzero entries) of the injected false data matrix. Nonetheless, in
this way, the rank of real measurement matrix would be underestimated. This is because there
are often perturbations on grid states at different time slots and thus a few changes between
the real measurement vectors. These changes will slightly bring down the correlations among
real measurement vectors, resulting in a slightly higher rank for the real measurement matrix.

To avoid the flaw of the existing work, in our problem formulation, we still minimize
the L0 norm of the injected false data attack matrix, but only confine the rank of the real
measurement matrix with an upper bound instead of minimizing it. As L0 normminimization
is NP hard, we resort to a relaxation in L1 norm with a constraint on the upper bound of the
rank of realmeasurementmatrix. Furthermore,we adoptmanifoldmodeling and optimization
techniques to translate the rank-constrainedmatrix optimization into geometric optimization.
The key enabling tool is a Grassmann manifold, a smooth geometric object in which each
‘point’ can be viewed as a subspace spanned by a matrix. Explicitly keeping a matrix low
rank is equivalent to implicitly moving a point on a Grassmann manifold. Furthermore, we
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apply a gradient descent method to track the subspace spanned by the real measurement
matrix on the Grassmann manifold.

We present both offline and online versions of our approach to false data separation.
The offline algorithm requires collecting all the measurement vectors over time instances to
recover the real measurement matrix. The online version conducts subspace updating con-
tinuously as measurements arrive, and progressively refines its output. To the best of our
knowledge, it is the first time that we explicitly solve the problem of online false data sep-
aration in a smart grid. For a smart grid that has been proven observable by observability
analysis, its energy management system (EMS) can estimate the grid’s operation state by a
power system measurement model, and our proposed approaches can work as bad data pro-
cessing methods and be integrated in the bad data processing routine of each state estimation
task. Once the EMS carries out a state estimation task, the bad data detection routine will
be launched, and our proposed approaches will be executed to identify and remove injected
false data in observed measurements. Empirical studies show that our proposed approaches
can accurately recover the original measurement matrix from corrupted data.

In the rest of the paper, Sect. 2 reviews related work. Section 3 introduces system model
and preliminaries. The offline and online algorithms are presented in Sects. 4 and 5. Section 6
contains simulation studies, and Sect. 7 concludes the paper.

2 Related work

Existing studies [12] show that carefully constructed false data injection attacks can cir-
cumvent traditional detection mechanisms and introduce arbitrary errors to power system
estimates. A vast literature has hence been devoted to more sophisticated algorithm design
that defends false data injection attacks, which can be categorized into three types, namely
(1) protection-based defense, (2) false data detection, and (3) false data separation.

Protection-based defense aims to prevent false data injection attacks from being launched
in thefirst place byprotecting critical sensors andmeterswhich are carefully selected [2,3,20].
Nevertheless, this line of mechanisms becomes less practical when the number of system
states is very large. Protecting a given number of sensors is expensive, and whether perfect
protection can always be guaranteed is questionable. Furthermore, such mechanisms require
an accurate grid topology, which is hard to obtain and is not always static.

False data detection aims to detect a false data injection attack after it happens. It formu-
lates the problem of state estimation under malicious attacks as a hypothesis testing problem
[10,20]. Such mechanism requires a prior probability distribution on the grid states. In con-
trast, our solution is a prior-free one and can not only detect but also eliminate false data
injected to the smart grid.

False data separation further aims to recover real measurements on the grid states from
the corrupted ones by exploiting the low-rank feature of the real measurement matrix and the
sparseness feature of the injected false datamatrix. As pioneered by thework of Liu et al. [13],
the existing approaches to false data separationminimize the rank of realmeasurementmatrix
and maximize the sparseness of the injected false data matrix. Nonetheless, these approaches
have a risk of underestimation on the rank of real measurement matrix, which may degrade
the performance of false data separation.

Besides, a few optimization methods have been proposed for the problem of low-rank
and sparse matrix separation, i.e., finding a low-rank matrix L ∈ R

m×n and a sparse matrix
S ∈ R

m×n such that the sum of L and S is equal to a given matrix D ∈ R
m×n . This matrix
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separation problem is very similar to the problem of false data separation in a smart grid.
Hence, these optimization methods can also be applied in the smart grid to identify and
separate the false data injected in observed measurements, although they are not originally
proposed in the smart grid. According to their adopted objective function for optimization,
these optimization methods can be categorized into two main groups, namely (1) convex
optimization-based approaches and (2) matrix factorization-based approaches.

Convex optimization-based approaches address the matrix separation problem by solving
the convex optimization problem as below.

min
L,S

||L||∗ + λ||S||1, s.t. D = L + S

where ||L||∗ refers to the nuclear norm ofL, ||S||1 stands for the L1 norm of S, and λ > 0 is a
weighting factor. The above problem is usually called as robust principal component analysis
(rPCA) [5] (or principal component pursuit [7]). Two types of solutions have been developed
for this problem. The first one adopts and extends the well-known iterative shrinkage (or soft-
thresholding) scheme for convex optimization [5], and second one is known as the augmented
Lagrangian alternating direction method (ALADM) [21] which iteratively minimizes the
augmented Lagrangian function of rPCA with respect to either L or S.

Matrix factorization-based approaches express the matrix L ∈ R
m×n as a matrix product

L = V�, where V ∈ R
m×r and � ∈ R

r×n [r < max(m, n)], and translate the problem of
low-rank and sparse matrix separation as the form below.

min
V,�,S

||S||1, s.t. D = V� + S

Similar ideas have been applied to matrix compressed sensing problem [8] and matrix com-
pletion problem [18]. To minimize the variables V and � which only appear in the objective
function, several types of approaches have been proposed, such as the classic GS (Gauss–
Seidel) scheme [8], the efficient SOR (Successive Over-Relaxation) scheme [18], and more
recently an ALADM-like scheme [16] with least square method for variable update.

3 System model and preliminaries

3.1 State estimation in smart grids

The state estimation problem is to estimate the state of a smart grid from redundant measure-
ment data collected from meters. In the grid, the linearized model of state measurement can
be expressed as a linear regression equation as follows.

z = Hx + e

where x = (x1, x2, . . . , xn)T refers to the true state vector of the grid, and n is the number
state variables; z = (z1, z2, . . . , zm)T denotes themeasurement vector observed at ECC, and
m is the number of meters deployed;H = (hi, j )m×n is a constant Jacobian matrix that links
meter readings to real grid states and is determined by grid topology and line impedances;
and e represents the measurement error, which is usually modeled as a zero-mean Gaussian
noise vector with covariance matrix R [19].

Based on the equation above, traditional approaches estimate the true state vector as
follows.

x̂ = (HTRH)−1HTRz
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With the estimated vector x̂ for the true grid state, the state estimator in ECC can compute a
measurement residual (z−Hx̂) to check whether there are large measurement errors caused
by system faults or malicious attacks [12]. The answer will be yes if the L2-norm of this
residual is greater than a threshold τ , i.e., if ||z − Hx̂||2 > τ .

3.2 False data injection attacks

A false data injection attack could successfully introduce errors into true state variables
by exploiting the configuration of the smart grid while bypassing a norm threshold-based
detection method [12]. To this end, it may inject a false data vector a = (a1, a2, . . . , am)T,
which can be expressed as a linear combination of column vectors of H, i.e., a = Hc where
c contains combination coefficients. Then, the measurement vector observed at ECC is as
follows.

za = z + a = H(x + c) + e

Let x̂a and x̂ be the estimates of x with the distorted and true data, respectively. Then,
x̂a = x̂ + c, and we have

||za − ˆHxa || = ||z + a − H(x̂ + c)|| = ||z − Hx̂|| < τ

Hence, by setting a = Hc, attackers can trick the state estimator into believing that the true
state vector is xa = x + c.

3.3 Features of true and false data

Let zk and ak be the true measurement vector and injected false state vector at time tk ,
respectively. Matrices Zo = (z1, z2, . . . , zt) and A = (a1, a2, . . . , at) represent the true
measurements and injected false data over a period of t time slots. Then, the observed
measurement matrix Za at ECC is

Za = Zo + A.

Matrix Zo has a low rank due to the temporal correlation among measurements over time
and the spatial correlation caused by the same measurement topology [6,14]. On the other
hand, matrix A is sparse since (i) attackers can compromise only a limited number of meters
at a time and (ii) the attack often lasts for a limited time period to avoid detection. Besides
the limited resources of attackers, as pointed out by Liu et al. [13], the utilization of Phasor
Measurement Units (PMUs), which provide accurate measurements of bus voltage angles
and power flows to ECC, can also help reduce the number of comprised measurements in the
grid and make the matrix A sparse. Furthermore, due to their accurate measurements, PMUs
are able to minimize the effect of measurement noise and error during the identification
of injected false data, and improve the performance of false data detection and separation
algorithms.

Given the features of true and false data, one can separate Zo from A in Za by solving the
following optimization problem denoted by P0.

(P0) : min
Zo

rank(Zo) + ||A||0, s.t. Za = Zo + A

where the L0 norm ||A||0 is the number of nonzero entries in A. P0 belongs to the class of
rank minimization problems, which is NP hard. One may apply robust principle component
analysis [5] to approximately solve P0 byminimizing a weighted combination of the nuclear
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norm of Zo and the L1 norm of A, which is a convex relaxation from the original L0-norm
optimization [13]:

min
Zo

||Zo||∗ + λ||A||1, s.t. Za = Zo + A (1)

where nuclear norm ||Zo||∗ = ∑
k σk(Zo), and σk(Zo) stands for the kth largest singular

value of Zo.
This kind of nuclear norm-based methods [13] can separate Zo and A with a relatively

high probability, but have the following two flaws. (1) Since P0 and its approximation
Eq. (1) explicitly and implicitly minimize the rank of true measurement matrix Zo, they
may underestimate this rank and cause performance degradation for false data separation. In
practice, due to the perturbations on grid states at some time slots, there are a few changes
between the real measurement vectors, resulting in a slightly higher rank for Zo. (2) These
existing approaches are available only after measurement vectors are collected over a long
time period.

4 Offline false data separation

Aiming at an optimization framework that avoids an underestimation of the rank of Zo
and naturally supports both offline and online false data separation, we explore a novel
solution space inspired from differential geometry. In this section, we start from the offline
version, in which we firstly formulate the problem of false data separation as a rank-bounded
optimization:

min
Zo

||Za − Zo||1, s.t. rank(Zo) ≤ r (2)

where the upper bound r of rank(Zo) can be obtained by a rank estimation strategy [18].
Moreover, let Um,r = {U ∈ R

m×r : UTU = Ir } be the set of m × r matrices with r
orthonormal columns. The space of Um,r forms a Grassmann manifold, a smooth geometric
object in which each ‘point’U ∈ Um,r represents a r -D subspace of anm-D vector space. By
factorizing Zo into two matricesU ∈ Um,r andW ∈ R

r×t , the rank constraint in problem (2)
can be always satisfied since

rank(Zo) = rank(UW) ≤ min
(
rank(U), rank(W)

) ≤ r

In other words, keeping the matrix Zo low rank is equivalent to moving a ‘point’ on a
Grassmann manifold.

Furthermore, we introduce a residual matrix R = Za − UW, which is also the false data
matrix when UW is recovered exactly. Then, the problem of offline false data separation can
be formulated as the optimization problem below.

(P1) : min
U,W

||R||1, s.t. UW + R − Za = 0

P1’s augmented Lagrangian function is

L(U,W,R,Y, ρ) = ||R||1 + 〈Y,UW + R − Za〉 + ρ

2
||UW + R − Za||22

whereY ∈ R
m×t is theLagrangemultiplier corresponding to the constraintUW+R−Za = 0,

ρ is the penalty parameter, and 〈·, ·〉 denotes the inner product of two matrices.
L(U,W,R,Y, ρ) is not jointly convex w.r.t. (U,W), but it is convex w.r.t. either U orW

with other one fixed. Given this property, we resort to alternating minimization methods [15]
to solve problem P1, i.e., iteratively updating either of U andW with the other one fixed.
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4.1 Updating W with fixed U

Tofind the optimalWwith fixedU , we employ the alternating directionmethod ofmultipliers
(ADMM), which is a powerful technique for designing efficient distributed algorithms to
solve convex optimization problems [4]. Formally, with currentU, matricesW,R, andY can
be optimized as follows.

Wk+1 = arg min
W

L (U,Wk,Rk,Yk, ρk)

Rk+1 = arg min
R

L (U,Wk+1,Rk,Yk, ρk)

Yk+1 = arg min
Y

L (U,Wk+1,Rk+1,Yk, ρk)

Specifically, the exact expression of the matrices are

Wk+1 = (
UTU

)−1
UT

(

Za − Rk − 1

ρk
Yk

)

Rk+1 = S1/ρk

(

Za − UWk+1 − 1

ρk
Yk

)

Yk+1 = Yk + ρk (UWk+1 + Rk+1 − Za)

(3)

where S1/ρk (·) is an elementwise soft-thresholding operator which is defined as Sτ (x) =
sgn(x)max(|x | − τ, 0).

4.2 Search optimal U on Grassmann manifold

With the optimal (W,Y,R) that minimizes current L , we adopt a gradient descent method
to search the optimal U on the Grassmann manifold. As shown in Fig. 3, the search path
follows the manifold’s geodesics, and the search direction is determined by function L’s
descent gradient direction.

The gradient of L over a Grassmann manifold at U is its tangent vector which can be
calculated as follows.

∇L = LU − UUTLU (4)

where LU is the derivative of L w.r.t. U and is calculated as

LU = YWT + ρ(UW + R − Za)WT

To move closer to optimum of L , we update U along the descent gradient direction −∇L .
After � iterations, U will be

U� = U�−1V cos (�θ�)VT + P sin (�θ�)VT (5)

whereP�V is the compact SVD of−∇L , and θ� is the step size ofmoving along the geodesic
at the �th iteration.

Step size selection Variable step sizes help strike a trade-off between convergence guaran-
tee and speed. Large step sizes are first adopted to quickly reach the neighborhood of the
optimum; then, small steps are adopted to avoid overshooting. If the optimum is static, the
gradient descent approach is guaranteed to converge to a stationary point as long as the step
sizes satisfy the relationship below [11].

lim
�→+∞ θ� = 0 and

∞∑

�=1

θ� = ∞
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Fig. 3 ‘Point’ evolution onGrassmannmanifold. To keep the new ‘point’ on themanifold, we retract a tangent
vector to a geodesic on the manifold for moving the ‘point’ along

Initial U Since Eckart–Young–Mirsky theorem states that the optimum low-rank approxi-
mation for a matrix with fit measured by Frobenius norm has an analytic solution in terms
of the SVD of the matrix, we use SVD to estimate an initial U:

Za = U�VT =
r∑

i=1

σi uivi

where σi is the i th singular value of Za, and σ1 ≥ σ2 ≥ · · · ≥ σr . ui and vi are the left-
singular and right-singular vectors w.r.t. σi , respectively. We use the r left-singular vectors
(the largest r singular values) as the initial U, i.e.,

U0 = [u1, u2, . . . , ur ].
4.3 The offline algorithm

Our offline algorithm (see Algorithm 1) for false data separation takes as inputs the observed
measurement matrix Za, the initial value U0 of U, the upper bound r for the rank of the true
measurement matrix Zo, and step sizes {θ�}. It first estimates the optimal tuple (W,R,Y)

from the currentU via the ADMM algorithm (lines 2–7). Given the optimal tuple, a newU is
estimated by exploiting the gradient descent approach to search a current optimum of U on
the Grassmannmanifold (lines 8–9). The two steps are iteratively performed till convergence.
Then, Zo = UW and A = Za − Zo are returned as the true measurement matrix and false
data matrix.

4.4 Discussions

Convergence P1 is non-convex, hard to be solved efficiently. Algorithm 1 addresses this
problem through alternating minimization, which alternates between finding the best U and
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Algorithm 1 Offline False Data Separation Algorithm
Require: Observed measurement matrix Za , U0, r , {θ�}
Ensure: True measurement matrix Zo, false data matrix A
1: while UW not converge do // alternating minimization
2: Y = 0,R = 0, 0 < α < 1.8, ρ0 > 0, k = 0;
3: while W not converge do // ADMM algorithm
4: Update W,R,Y by Eq. (3);
5: ρk+1 = αρk ;
6: k := k + 1;
7: end while
8: Calculate �L by Eq. (4);
9: Iteratively update U by Eq. (5) till convergence;
10: end while
11: Zo = UW;
12: A = Za − Zo;

best W. Each alternating step in isolation is convex and tractable. Hence, Algorithm 1 is
a typical augmented Lagrangian alternating direction method (ALADM). Nonetheless, to
the best of our knowledge, there is no established convergence theory for ALADM algo-
rithms applied to non-convex problems, such as P1. On the other hand, extensive empirical
evidences, including our experimental results, suggest that ALADM algorithms often have
very good convergence behavior [4,13,16]. It is also proved that this kind of approaches will
converge to a KKT point under mild conditions. Shen et al. [16] recently showed that the
following alternating minimization problem,

min
U,W,Z

||Z − D||1 s.t. UW − Z = 0 (6)

where D is a known matrix, has the following property.

Proposition 1 Let X = (U,W,Z) and {X j }∞j=1 be generated through alternating mini-

mization. Assume that {X j }∞j=1 is bounded and lim j→∞(X j+1 − X j ) = 0. Then, each

accumulation point of {X j }∞j=1 satisfies the KKT conditions of Eq. (6). In particular, when-

ever {X j }∞j=1 converges, it converges to a KKT point of Eq. (6).

The optimization problem P1 has the same structure as Eq. (6). We can hence claim
that if variables in P1 are always bounded during the alternating minimization, then the
convergence result of Algorithm 1 satisfies the necessary conditions (KKT conditions) of
being the optimum.

Complexity analysis Executing ADMM takes O(Kmrt) time, where K is the number of
iterations in ADMM, and t is the number of vectors collected. The computation of∇L needs
O(mr2 +mrt + r3) time, performing SVD of −∇L for Eq. (5) requires O(mrt). Since rank
r � t , the overall time complexity of Algorithm 1 is O

(
N (Kmrt + mrt)

)
, where N is the

number of times for alternating minimization.

Applicability To avoid the flaw of the existing approaches to false data separation, we relax
the low-rank assumption on the real measurement matrix Zo to be more practical, since real
perturbations on grid states at different time slots often lead to a relatively higher rank forZo.
On the other hand, like the existing work [13,19,20], we still follow the sparseness assump-
tion on the injected false data matrix A, since the attack ability and available resources of
an attacker are usually limited for attacking a large smart grid system. In other words, our
proposed approaches are designed to defend attack scenarios in which attackers compromise
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only a small part of meters in a smart grid. For the cases in which attackers can have access
to a significantly large part of meters, we suggest to combine our proposed approach with
the protection-based defense methods, such as dynamically encrypting some of the measure-
ments. Then, in order to avoid being detected by the protection-based defense, attackers will
try to minimize the number of meters to tamper with, and construct a sparse A, which will
be identified and separated by our proposed approach. The above idea is not new, and in fact,
it was introduced by Kim et al. [9] as early as in 2011.

5 Online false data separation

An offline false data separation conducts its computation only after collecting a sequence
of measurement vectors over a time period. Waiting for such data being accumulated with-
out any action may result in early detection opportunities missed. To defend against false
data injection with real-time responses and low computational complexity, we extend our
geometry optimization framework to an online version.

Instead of waiting for a complete Za containing observed measurement vectors over a
period of t time slots, we evolve the matrix U ∈ Um,r in real time when each observed
measurement vector zai of time i (i ∈ {1, 2, . . . , t}) arrives. Here, zai is equivalent to the i th
column of Za. Moreover, let vector wi be the i th column of W , and residual vector ri be the
i th column of the residual matrix R. Then, the rank-bounded optimization in Problem (2)
can be reformulated as

min
U,wi

t∑

i=1

||zai − Uwi ||1, s.t. U ∈ Um,r

and our online algorithm solves the problem below.

(P2) : min
U,wi

||ri ||1, s.t. Uwi + ri − zai = 0

5.1 The online algorithm

We use the same alternating minimization framework to address problem P2 since it is non-
convex.WhenU is fixed asU�, P2 is a classic least absolute deviation (LAD) problem,which
can be naturally solved by ADMM, and the augmented Lagrangian function is as follows.

L (wi , ri , yi , ρi ) = ||ri ||1 + yTi (U�wi + ri − zai )

+ρi

2
||U�wi + ri − zai ||22

where yi is the i th Lagrangian multiplier, and ρi is the corresponding penalty parameter.
Given U�, the optimal (wi , ri , yi ) can be computed to minimize function L by iteratively

refining the triple below.

wk+1
i = (

UT
�U�

)−1
UT

�

(

zai − rki − 1

ρi
yk

)

rk+1
i = S1/ρi

(

zai − U�w
k+1
i − 1

ρi
yk

)

yk+1
i = yk + ρi

(
U�w

k+1
i + rk+1

i − zai
)

(7)
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Algorithm 2 Online False Data Separation Algorithm
Require: Sequence of za i , random unitary matrix U, r , {θ�}
Ensure: True measurement matrix Zo
1: for i = 1, 2, . . . , t do // za i of time i arrives
2: for j = 1, 2, . . . , N do // alternating minimization
3: yi = 0, ri = 0, 0 < α < 1.8, ρ0 > 0, k = 0;
4: while wi not converge do // ADMM algorithm
5: Update (wi , ri , yi ) by Eq. (7);
6: ρk+1 = αρk ;
7: k := k + 1;
8: end while
9: Iteratively update U by Eq. (10) till convergence;
10: end for
11: end for
12: Zo = UW; //W = (w1,w2, . . . ,wt )

Then, we apply gradient descent approach to evolveU fromU� toU�+1. To compute function
L’s gradient on Grassmann manifold, we first compute the partial derivative of L w.r.t. U:

dL
dU

= yiwT
i + ρi (U�wi + ri − zai )w

T
i = (yi − ρiei )wT

i

where ei = zai − U�wi − ri . The gradient ∇L of L is

∇L = dL
dU

− UUT dL
dU

= (
I − UUT)

(yi − ρiei )wT
i = χwT

i

where χ = (I − UUT)(yi − ρiei ). Along the direction of −∇L, U can be updated to a new
value U�+1 along the geodesic emanating from U� on Grassmann manifold:

U�+1 = U�V cos(�θ�)VT + P sin(�θ�)VT (8)

where P�V is the compact SVD of the descent gradient −∇L, and θ� is the step size of
moving U� along the geodesic.

It is straightforward to compute the gradient using SVD in Eq. (8), since the rank of ∇L
is 1. The only nonzero singular value is σ = ||χ || · ||wi ||, and the corresponding singular
vectors are χ

||χ || and
wi||wi || , respectively. The SVD of ∇L can be formulated in the form of

matrix product as

∇L =
[

χ

||χ || , p2, . . . , pr
]

diag(σ, 0, . . . , 0)

[
wi

||wi || , q2, . . . , qr
]T

(9)

where (p2, . . . , pr ) and (q2, . . . , qr ) are arbitrary orthonormal vectors orthogonal to χ and
wi , respectively.

By replacing V and P in Eq. (8) with singular vector matrices in Eq. (9), the evolution of
U becomes:

U�+1 = U� + (
(cos (σθ�) − 1)U�q1 − sin (σθ�)p1

)
qT1 (10)

where p1 = χ
||χ || and q1 = wi||wi || .

The overall online algorithm is presented in Algorithm 2, in which N is the alternating
minimization times to evolve U for current time slot. Our simulation studies show that the
algorithm converges when N is around 20.
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5.2 Time complexity

When a new observed measurement vector zai of the i th time slot arrives, estimating the
optimal (wi , ri , yi ) with ADMM takes O(Kmr) time, where K is the number of iterations
in ADMM. Our simulation studies show that K is usually less than 50. Calculating ∇L in
Eq. (9) requires O(mr2) time. The update ofU avoids a full SVD computation and is merely
a multiplication of a matrix with a vector, which only needs O(mr) time. In summary, the
amortized per-slot time complexity of the online algorithm is O

(
N (Kmr + mr2)

)
.

6 Performance evaluation

In this section, we first introduce the experimental setup and then evaluate the accuracy
performance of our approaches to false data separation in terms of relative error and ROC
criteria. We also discuss the effect of the upper bound r for the real measurement matrix Zo,
followed by an efficiency study for our approaches.

6.1 Experimental setup

We conduct trace-driven empirical studies on two large system models, namely the IEEE
300-bus system and the Polish 3375-bus power system. Each measurement vector consists
of the power injection measurements at all buses and power flow data at all branches. These
vectors are collected over a period of t time slots at one vector per slot. A small portion ε

of the state measurements is compromised by false data attackers with arbitrary data. The
corrupted data are chosen randomly, and the attacks last a period of Δt .

We evaluate the accuracy performance of our algorithms with the criterion of relative
error (RE), which is calculated as

RE = ||Za − Zo||F
||Zo||F ,

and the technique of receiver operating characteristic (ROC) analysis. The hit rate and false
alarm rate (FAR) in a ROC graph are defined as

Hit Rate = NTP

NTP + NFN
, FAR = NFP

NFP + NTN
,

where NTP, NFN, NFP and NTN refer to the numbers of true positives, false negatives, false
positives, and true negatives, respectively.

We compare our algorithms with the existing two state-of-the-art solutions for false data
separation, i.e., the nuclear norm minimization (abbreviated as NC) and low-rank matrix
factorization (abbreviated as LRMF) approaches proposed by Liu et al. [13]. Moreover, since
a few optimization methods, such as the rPCA and matrix factorization-based approaches,
can be also applied or extended to solve the problem of false data separation, we also compare
our algorithms with these methods, including the rPCA approach with iterative shrinkage
scheme for optimization (abbreviated as rPCA), and the matrix factorization approach with
SOR scheme for optimization (abbreviated as SOR). Note that the NC algorithm is in fact
a typical rPCA approach with ALADM scheme for optimization, and the LRMF algorithm
is in fact a matrix factorization approach using ALADM scheme. All algorithms in the
experiments are implemented in MATLAB, running on a Macbook Pro laptop with 2.4GHz
Intel Core i5 CPU and 8GB RAM.
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Fig. 4 Accuracy performance of our offline and online algorithms on IEEE 300-bus system. a Accuracy
performance of offline algorithm, b accuracy performance of online algorithm
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Fig. 5 RE versus compromised data ratio on IEEE 300-bus system and Polish power system. a IEEE 300-bus
system, b Polish power system

6.2 Accuracy performance study

Wefirst study the accuracy performance of our algorithms for recovering true smart gridmea-
surements. We compute the relative error of the recovered results under different corrupted
data ratios. Our algorithms are tested on the IEEE 300-bus system, and the measurement data
are collected for 300 time instances, which construct an observed measurement matrix Za
of size 561 × 300, as there are 561 measurement variables in the IEEE 300-bus system. In
this experiment, we fix the upper bound r for the rank of real measurement matrix at 5 and
vary the corrupted data ratio ε from 0 to 0.35. Figure 4a shows that after sufficient iterations,
our offline algorithm can successfully filter false data with a relative error at level of 10−3,
even when 35% of the observed measurements are corrupted; Fig. 4b shows that our online
algorithm can converge in less than 32 iterations with precision close to 10−3, when the
corrupted data ratio is low. Moreover, from the figure, we can also observe that both of our
offline and online algorithms are not sensitive to corrupted data ratio.
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Fig. 6 ROC curves on IEEE 300-bus system and Polish power system. a IEEE 300-bus system, b Polish
power system

The relative error comparison result between our algorithms and the existing approaches
is illustrated in Fig. 5. The comparison result on IEEE 300-bus system (with r = 5) is shown
in Fig. 5a, from which we can obverse that when compromised measurement ratio increases,
the performance of our offline algorithm deteriorates slightly, but is still the best; compared
with the other five tested algorithms, our online algorithm is relatively less sensitive to the
compromised data ratio ε. The comparison result on the Polish 3375-bus power system (with
r = 10) is shown in Fig. 5b and exhibits a similar trend.

Figure 6a, b illustrate the ROC curves (under compromised data ratio ε = 0.1) of the
six tested algorithms on the IEEE 300-bus system and the Polish 3375-bus power system,
respectively. An algorithm has a better performance if it has a high hit rate even when the
false alarm rate is low. Figure 6 shows that our offline algorithm has the best performance,
and our online algorithm is also better than the NC, LRMF, rPCA, and SOR algorithms.

6.3 Effect of upper bound r for Zo’s rank

In this experiment, we fix the real rank of real measurement matrix Zo on the IEEE 300-bus
system to 5, and use different value from 1 to 10 as the upper bound r for the rank of Zo
recovered by our algorithms. Figure 7a illustrates the effect of different upper bound r on
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Fig. 7 Effect of upper bound r for the accuracy performance of our algorithms. a IEEE 300-bus system, b
Polish power system

the accuracy performance of our algorithms. From the figure, we can observe that when the
upper bound r equals true rank of the measurement matrix, our online and offline algorithms
have the best performance; when r deviates from the true rank to a larger value, the accuracy
performance of our algorithms decreases gracefully; when r decreases from the true value,
the accuracy performance of our algorithms degenerates rapidly. Therefore, in practice, we
can relax the upper bound r to a relatively larger value to be safe. As the NC and rPCA
algorithms try to minimize the rank of real measurement matrix, they are not influenced by
r .

In the large test case of Polish power system illustrated in Fig. 7b, the true rank of real mea-
surement matrix is 10; similar results to those in the IEEE 300-bus system can be observed.

6.4 Efficiency study

We compare our algorithms with the NC, LRMF, rPCA, and SOR algorithms on computa-
tional complexity.We vary the rank of the measurement matrix on the Polish 3375-bus power
system and test the CPU time required by each algorithm for convergence. The corrupted
data ratio is fixed at ε = 0.1.
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As shown in Fig. 8, the total CPU time of our online algorithm is relatively lower than
our offline algorithm. This can be explained by the fact that our online algorithm removes
full SVD computation. The offline algorithm takes more time to arrive at its stationary point,
as it combines SVD and ADMM. LRMF algorithm shows the best efficiency performance
in this experiment. Nevertheless, our offline algorithm only takes about 20% more time than
LRMF, while converging to a far more accurate result (see Fig. 7). Moreover, the increase in
our online algorithm complexity is more moderate as the rank of real measurement matrix
increases.

7 Conclusion

In this paper, we have modeled the problem of false data separation in a smart grid as a rank-
constrained matrix optimization problem, which helps recover original real measurement
data more accurately by preserving the true changes between the measurements at different
time slots caused by the perturbations on grid states. We have also proposed both offline
and online solutions for the problem. To the best of our knowledge, it is the first time that
we explicitly solve the problem of online false data separation in a smart grid. Trace-driven
simulations show that our approach compares favorably with the existing state-of-the-art
solutions.
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