N\
World Wide Web @ CrossMark
https://doi.org/10.1007/s11280-018-0552-7

Efficient time-interval data extraction in MVCC-based
RDBMS

Haixiang Li! - Zhanhao Zhao?? . Yijian Cheng?? .
Wei Lu?? - Xiaoyong Du?? . Anqun Pan!

Received: 16 December 2017 / Revised: 4 March 2018 / Accepted: 21 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Account reconciliation is the core business in banks and game companies. It reg-
ularly examines the account balance with the bank or expense statement for every user and
reports the daily, weekly, or monthly balance. Once an account imbalance occurs, it is nec-
essary to efficiently trace the transactions that possibly destroy the account balances. To
help efficiently trace this kind of transactions, in this paper, we investigate the problem of
doing efficient time-interval data extraction in MVCC-based RDBMS, i.e., extracting the
incremental data that are valid between a given time interval in MVCC-based RDBMS. To
this end, we propose a snapshot-based method to extract incremental data based on the fact
that each record is inherently associated with lifetime, indicating whether the record can be

This article belongs to the Topical Collection: Special Issue on Web and Big Data
Guest Editors: Junjie Yao, Bin Cui, Christian S. Jensen, and Zhe Zhao

> Wei Lu
lu-wei@ruc.edu.cn

Haixiang Li
blueseali @tencent.com

Zhanhao Zhao
zhanhaozhao@ruc.edu.cn

Yijian Cheng
yijiancheng @ruc.edu.cn

Xiaoyong Du
duyong@ruc.edu.cn

Anqun Pan
aaronpan@tencent.com

Tencent Inc., Shenzhen, China

Key Laboratory of Data Engineering and Knowledge Engineering, Renmin University of China,
Beijing, China

School of Information, Renmin University of China, Beijing, China

Published online: 11 April 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0552-7&domain=pdf
mailto:lu-wei@ruc.edu.cn
mailto:blueseali@tencent.com
mailto:zhanhaozhao@ruc.edu.cn
mailto:yijiancheng@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:aaronpan@tencent.com

World Wide Web

accessed or not for a given time interval. We elaborate how to integrate our method into
MySQL, an open-sourced RDBMS, and propose a declarative way to fetch the incremen-
tal data. Several optimization techniques are proposed to boost the extraction performance.
Extensive experiments are conducted over the standardized Sysbench benchmark to show
that our proposed method is robust and efficient.

Keywords RDBMS - MVCC - Incremental data extraction - Snapshot

1 Introduction

Account reconciliation is of great importance to corporate service charging and banking
deposit systems. For example, in the Tencent’s service charging system, a registered QQ
[14] or WeChat [22] user can recharge his or her account so that he or she can utilize the paid
business offerings that the system provides, like purchasing game equipments, watching
digital fee TV, etc. From the perspective of the service charging systems, any access to the
paid business offerings must guarantee that the account reconciliation is correct, i.e., any
change of the account balances must be in consistency with the expense statements. To do
this, the system is required to do regular account reconciliation and reports the daily, weekly,
or monthly balance.

In some cases, however, due to the unpredictable system failures, results of doing the
account reconciliation could be incorrect, i.e., changes of the account balances is not in
consistency with the expense statements. Account imbalance can bring serious harms to
financial systems, which could result in a loss of money or even a loss of customers. In this
case, it is of great importance to dig out the harmful behaviors by tracing back to the trans-
actions in the expense statements that possibly destroy the account balances. To this end, in
this paper, we investigate the problem, namely time-interval data extraction, which is infor-
mally defined to extract the incremental data that are valid between a given time interval. By
separating the time into a sequence of intervals and doing the account reconciliation with
the help of the time-interval data extraction, once an account reconciliation in a time interval
is checked to be incorrect, then transactions that occur in this time period are considered as
suspicious transactions. For example, if we find the suspicious transactions occurring dur-
ing 10:00 am and 11:00 am in Sep. 17, 2017, then we simply extract the transactions during
10:00 am and 11:00 am in Sep. 17, 2017 and then do account reconciliation to figure out
the harmful transactions.

Execution of the time-interval data extraction tasks in RDBMS is not trivial. The reason
is two-fold. First, implementation of time-interval data extraction should be transparent to
users. One may think that by building an auxiliary relation recording all updates of account
balance and the update time, it is able to do time-interval extraction by checking the update
time based on the auxiliary relation. However, it not only incurs additional maintenance
cost and modifies the database schema, but also degrades the system throughput since any
update operation on the original relations will result in a cascading update of the auxiliary
relation. Second, execution of the time-interval data extraction tasks should be easy to use.
Consider that SQL has become a standard query language in existing commercial and open
source RDBMS. Using SQL to execute the time-interval data extraction tasks is preferred.

We investigate the problem of doing interval data extraction in MVCC-based RDBMS.
MVCC is widely adopted as a concurrency control mechanism in existing RDBMS, includ-
ing Oracle, MySQL and PostgreSQL [19], etc. In MVCC mechanism, (1) each record is

@ Springer

World Wide Web

associated with multiple versions. More specifically, each insertion will generate a new ver-
sion of the record. Each deletion will set a deletion flag in the latest version. Each update
will set a deletion flag in the latest version and generate a new version of the record; (2)
each version is associated with a transaction ID that operates (including insert, delete and
update) the record. The transaction ID and the start time of the transaction are interchange-
able; (3) a snapshot refers to the transaction states of the database system, and records all
alive, completed transaction IDs [6]. To process a regular SELECT-FROM-TABLE query,
the RDBMS engine will generate a snapshot for this query, and each record version, which is
accessible by comparing the snapshot with the latest transaction ID that operates the record,
is returned.

Consider the problem of interval data extraction in which we target to extract records that
are accessible between time #; and ¢;. Direct applying snapshot to extract interval data is
infeasible. The reason is two-fold. First, different from the regular SELECT-FROM-TABLE
query, no snapshot is still preserved at time #; or time ¢;, and hence it is unable to verify
whether a record is accessible. Second, even we can make effort to rebuild the snapshots, a
judgment mechanism to verify the record is necessary. To address the above two issues, we
first propose a snapshot reconstruction mechanism to preserve the transaction states during
the runtime, and then present a carefully designed record visibility judgment mechanism,
to extract the time-interval incremental data. To boost the query performance, we propose
an index-based method to skip unnecessary pages to reduce the I/O cost. To sum up, our
contributions are listed as follows:

— We propose a new type of query pattern, named as time-interval data extraction, which
targets to extract incremental data for any given time interval in MVCC-based RDBMS.

— We propose a novel snapshot-based method, with a carefully designed record visibility
judgment mechanism, to extract the time-interval incremental data. Various optimiza-
tions are proposed to reduce the I/O cost by skipping the pages without containing any
records that are the results in the time-interval data extraction queries.

— We propose a declarative way, using SQL, to extract the time-interval data and provide
a customizable parameter to fetch the inserted, updated and deleted data in the time-
interval data extraction.

— We implement our proposed method in MySQL, a widely used open source RDBMS.
Extensive experiments are conducted over the standardized Sysbench [20] benchmark,
which demonstrates our proposed method is robust and efficient.

The rest of the paper is organized as follows. Section 2 defines our problem, discusses exist-
ing incremental data extraction methods, and reviews the MVCC mechanism. Section 3
gives an overview of our proposed method. Section 4 describes the implementation in
details. Experimental results are discussed in Section 5. Section 6 concludes this paper.

2 Preliminaries

2.1 Problem definition

Let R be a relation with n records. Formally, R is represented as {r, 2, ..., r,}. Given two
timestamps #;, t; (t; < t;), our objective is to efficiently identify the incremental data of

relation R between time #; and ¢}, i.e., the data inserted, deleted or updated in this certain
time-interval would be extracted. Let S(R, t;) represent the collection of records in R that

@ Springer

World Wide Web

are accessible at time #;, and I (R, t;, t;) represent the incremental records in R between
time #; and ;. Apparently, records that are accessible at time #;, but not accessible at time
tj, are deleted; on the contrary, records that are accessible at time ¢;, but not accessible at
time #;, are inserted; Therefore, I (R, t;, t;) can be formally defined in (1).

I(R,ti,l‘j)=(S(R,t,‘)—S(R,Ij))U(S(R,tj)—S(R,t,')), L <tj @))]

Example 1 Figure 1a and b show a relation about accounts’ balance at time ¢; and #,. Sup-
pose we want to figure out the incremental data between time #; and ¢;. We can see that
the r; is deleted, r» keeps unchanged, r3 is updated and r4 is inserted during the given
time-interval. Therefore, according to (1), records shown in Figure 2 can be reported as the
results.

For reference, symbols listed in Table 1 will be used throughout the paper.

2.2 Related work
2.2.1 Incremental data extraction

Incremental data extraction is a key step of Extract-Transform-Load(ETL) process [8, 11,
12] in a wide spectrum of applications, including account reconciliation, data monitoring,
archives management, entity retrieval [26], incremental recommendation [23] etc. Exist-
ing approaches target to do ETL more efficiently and effectively. In general, they can be
divided into four categories, timestamp based extraction, data snapshot method, trigger
based extraction and log based extraction.

Timestamp based extraction [15] needs to attach an additional timestamp attribute to the
source table. The timestamp attribute will store the time when the record is inserted into
the table. Therefore, given a relation named mytable, the incremental data between time ¢;
and ¢; can be obtained by executing a query like SELECT * FROM mytable WHERE times-
tamp BETWEEN t; AND t;. As implemented as SQL statements, this method can easily be

Record ID Name Balance
7 James 1000
T Mark 2000
T3 Charley 500

(a) Relation R at time t1

Record ID Name Balance
T Mark 2000
T3 Charley 1500
T4 Kate 900

(b) Relation R at time t2

Figure 1 The relation of accounts’ balance at time #; and ¢

@ Springer

World Wide Web

Record ID Name Balance Status
7 James 1000 Delete
T3 Charley 500 Update
7 Kate 900 Insert

Figure 2 The incremental data between time #; and ¢;

integrated into RDBMS. However, there are two main disadvantages of this method. First,
records that have been deleted cannot be fetched because only the create time of records is
stored but the deleted time is missing. Second, an expensive index should be applied on this
attribute for accelerating the query efficiency, where maintaining this timestamp attribute
needs additional costs.

Data snapshot method requires snapshots or backups of the physical data should be stored
periodically. The changed data can be extracted by comparing snapshot of the current state
with snapshot of a previously state. There are some methods like window algorithm [5] and
sort-merge algorithm to compare the data snapshots and organizing data. It is an efficient
way to find differences based on physical data but it cannot be combined with transactions,
where the data may be incorrect since the consistency is not guaranteed. In other words,
there may exist some dirty records that cannot be read at that time.

Trigger based extraction [15] means that there will be a trigger attached on the source
relation to trace data insert, update and delete. Whenever the source relation changes, the
corresponding trigger will be activated, and the changed data will be captured and stored
in a temporary table. Therefore, the data is redundant, and a time-consuming trigger will
lead to the slower response of the source database. Oracle synchronization CDC is imple-
mented base on the trigger mechanism. Within this system, real-time synchronization can
be achieved but business system performance will be degraded, and the efficiency of the
source system is reduced by about 10%.

Log based extraction [4] is a method to obtain the incremental data by parsing the system
log of RDBMS. This method is widely used due to its universality. Regarding this method,
the log service would not affect the performance of the source system, and it is convenient to
transfer the logs to other systems, like Kafka, which is now considered as a basic component
for real-time analysis. There are some existing systems like Canal [3], Oracle asynchronized
CDC, etc. However, there is a certain delay during the log generation. Besides, the develop-
ment of log based extraction becomes quite difficult for the systems without providing log
analysis interface.

Table 1 Symbols and their

definitions Symbol Definition
R arelation, R = {ry, ..., 1}
I(R, ;1)) the incremental records of relation R in time
interval [#;, ¢;]
S(R, t;) snapshot at time #; for relation R
A attributes of R, A = {ay, ..., am}
T; a transaction with ID i
opT an insert, update or delete operation

@ Springer

World Wide Web

2.2.2 Multi-version concurrency control

The MVCC mechanism was first proposed in 1978 by Reed and David Patrick [16]. It
targets to solve the data inconsistency issue that occurs when the single record is accessed
concurrently by multiple transactions. The MVCC is always combined with timestamp [1]
or lock technology [24]. Snapshot Isolation is a detailed concurrently technique based on
MVCC. In [2, 13, 17, 25], the serializable snapshot isolation has been conducted, which
enable the transaction snapshot has been widely used in the RDBMS, like PostgreSQL [19]
and MySQL(InnoDB as the storage engine).

In the MVCC-based database, a record has series of versions, which are generated when
the update or insert operations are applied to this record. The snapshot can be defined as
transaction snapshot, which is a view that shows the most recent version of a record can be
seen by the current transaction. According to the multi-version record and the transaction
snapshot, the concurrent transactions will not affect each other, for each transaction operates
specific versions that definitely will not affect other transactions [6, 7, 10].

An example of MVCC-based transaction processing is shown in Figure 3. Suppose there
is arecord A = {10, 20} and four transactions, denoted as Ty, 71, T», T3 respectively, are
doing concurrent operations on record A. Ty would like to update the first attribute of A to
30. Although the Ty is still running when 77 starts, 77 is able to obtain the select result as
A = {10, 20} without blocking by Ty. As for 7>, a new version of record A is constructed
after the commit operation of 7». The latest version should be A = {40, 20}, the original
versionis A = {10, 20}. T4 is able to get the result as A = {40, 20}. According to the MVCC
mechanism, the consistency transactions can be processed efficiently and methodically.

3 System overview
In this section, we propose a novel snapshot-based method for incremental data extraction.

Snapshot is a basic concept in RDBMS and used to record the execution status of all trans-
actions. Typical status includes running, committed or aborted, indicating that a transaction

Record A TO Tl T2 T3
Original Version 10,20 EOP]){?(?IZEOI?
SELECT A

UPDATE A
COMMIT | 10 {40,203

Latest Version 40,20 COMMIT

SELECT A

ABORT COMMIT

Figure 3 The concurrent transaction processing in MVCC

@ Springer

World Wide Web

is running, has been committed, or aborted, respectively. When a transaction starts, its status
will be set to running and added to the snapshot accordingly. When a transaction completes
(committed or aborted), its status will be updated to committed or aborted in the snapshot
accordingly. In RDBMS, snapshot helps determine which versions of records are visible
when users issue queries, as well as concurrency control. With these knowledge, we aim
to extract the incremental data based on the snapshot. In existing RDBMS, any historical
versions of records are not maintained, i.e., we cannot trace the data that have been deleted
or updated. Instead, with the help of the visibility judgment mechanism, any historical ver-
sions of records can be extracted and maintained from the system level. For this reason, the
visibility judgment mechanism can help answer incremental data extraction queries auto-
matically from the system level without any involvement from users, and hence reduce the
extra maintenance overhead.

The overall system architecture is shown in Figure 4. Users can issue SQL statements
using INCREDATA keyword to fetch incremental data. In general, usage of INCREDATA
is similar to that of SELECT (details are shown in Section 3.2). By specifying the startPoint
and endPoint in the time-interval data extraction query, it is able to generate two snapshots
regarding two time points startPoint and endPoint , and we then extract the incremental data
based on the two snapshots.

3.1 Snapshot-based incremental data extraction method

We can use the information stored in snapshot to fetch data versions generated between
a certain time-interval [startPoint,endPoint], where the incremental data can be extracted
according to these versions. Meanwhile, unless the transaction is committed, the data
operated in this transaction would not influence other existing data. Therefore, combined
snapshots with record versions, we can fetch the incremental data that is definitely correct.

For convenience, we present a typical snapshot schema for a regular MVCC-based
RDBMS in Figure 5. Given two transaction IDs lowerBound and upperBound, there are

i coll | . | com j» tuplel_version2 3
INCREDATA start_snapshot : tuplel_versionl 3

stop_snapshot

Snapshot Differential Algorithm

o s—

tuplel_version2

Coll . Coln
J tuplel_version]

tuple2_version2

Coll | Coln status

update

delete

tuple2_versionl

insert

v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

tuple3_versionl | |

Figure 4 The overall system architecture

@ Springer

World Wide Web

class Snapshot { S1
ulint64 upperBound; upperBound: 50
ulint64 lowerBound; lowerBound: 10
ulint64 trxCreator; trxCreator: 25
ulint64 createTime createTime: 15115349865

¥

Figure 5 A typical snapshot schema and a nest snapshot example

several properties based on the snapshots. Transactions that finish before the lowerBound
are definitely visible to the current snapshot. Transactions that start after the upperBound are
definitely invisible to the current snapshot. The trxCreator represents the current transaction
that creates this snapshot. CreateTime records a timestamp when this snapshot is created.
According to these variables, the visibility judgment method for a certain time-interval is
clearly conducted in Algorithm 2.

S1in Figure 5 is a snapshot example, which contains the information that the transactions
before lower-bound: 10 are all finished and visible, the transactions after upperBound:50 are
still running and invisible. This snapshot is created by transaction ID:25.

Given a relation R, the common record structure applied in MVCC-based RDBMS
can be defined as Figure 6. It is composed with the system columns and user defined
columns logically. The system columns are fixed columns generated by system including
the unique row identifier, information about transaction effects on this record, etc. The
commit_time represents when this record is inserted or updated, besides, the delete_flag
will be marked when this record is deleted. The user defined columns, which are also
represented as attributes A = {ay, ..., a,, }, contain the structural data added by users. There-
fore, we can define the record visibility as whether it can be seen at a specific time #,
which can be judged by the transaction info and other system columns inherently existed
in each record. The record that is non-visible at #; but visible at ¢; can be defined as incre-
mental record. For each incremental record, we obtain an “expanded-record” which can
be expressed as r/ = {r;, opT}, where opT represents the operation on this record and
opT = enum{insert, update, delete}.

Now we consider about how to obtain the incremental data in MVCC-based RDBMS
efficiently. Figure 7 illustrates some concurrency transactions circumstances based on a
time-line. T} denotes a transaction starts at r; and commits at #3. Besides, 7, denotes a

TRANS_INFO
A

ROW_ID | commit time | deleted flag |...| Col.1 |...| Coln

Y Y
System Columns User defined Columns

Figure 6 The common structure of a record in RDBMS

@ Springer

World Wide Web

start stop

T 1,

‘ A 4 A 4

b b Gt ts L

v

Figure 7 Concurrency transactions according to a time-line

transaction starts at 74 and commits at 5. Snapshots named as s_start and s_stop is token
at 4 and tg respectively.

When we do insert operations in 77 and T3, T} starts insert transaction before s_start and
commits between s_start and s_stop, T starts insert operation between s_start and s_stop
and also commits between s_start and s_stop; In short, the insert data between s_start and
s_stop can be generalized as (2).

s_start.createTime < ri.commit_time < s_stop.createTime

&& ri.deleted_flag == null 2)

When T and T, are doing delete operations, the deleted data between s_start and s_stop
can be generalized as (3).

s_start.createTime < ri.commit_time < s_stop.createTime

&& ri.deleted_flag # null 3)

When 77 and T, are doing update operations, according to the MVCC, a newer version is
generated and the older version is marked as deleted. Therefore, the update operations can
be considered as a combination of delete and insert operations. The update records between
s_start and s_stop should fit the condition in (4) and (5).

s_start.createTime < ri.prev().commit_time < s_stop.createTime

&& ri.prev().deleted_flag # null “)
s_start.createTime < ri.commit_time < s_stop.createTime)
&& ri.deleted_flag == null

Algorithm 1 shows the framework that how the incremental data generated between
given snapshots can be obtained. For each record, the correct version should be found out
according to given snapshots. The version which passes the visible judgment is included in
the incremental data set, where I (R) can be generated.

@ Springer

World Wide Web

Algorithm 1 Snapshot-based incremental data extraction algorithm

Input: R: Source relation; s_start: Snapshot represents the start point; s_stop: Snapshot
represents the stop point;
Output: 7(R): Incremental data set

1: initial /(R) = @;

2: repeat

3 Get current positioned record r; in relation R;

4 opT = isVisible(r;, s_start, s_stop, 1)

5: if opT =0 then > this version is visible
6 put r;,opT into I (R)

7 end if

8 while ;. prev()! = NULL do

9: ri = ri.prev();
10: opT = isVisible(r;, s_start, s_stop, 0)
11: if opT !=0 then > this version is visible
12: put r;,0pT into 7 (R)
13: end if
14: end while

15: until Relation Scan Finished

Algorithm 2 indicates the detailed record visibility judgment algorithm for a certain time-
interval. At first, the commit_time of the input record should meet the conditions indicated
in (6). If so, this record is committed in the given time-interval and is an incremental record,
otherwise it is not an incremental record in this time-interval. And then, the deleted tag of
this record should be checked to identify if this is a deleted record. If the previous version is
missing, this record can be defined as an inserted record, otherwise, this record is an updated
record.

s_start.createTime < ri.commit_time < s_stop.createlime (6)

Algorithm 2 Record visibility judgment algorithm

Input: r;: A given version of a record; s_start: Snapshot represents the start point; s _stop:
Snapshot represents the stop point; is_first: 1-latest version, 0-previous version;

Output: opT: operation tag, 0-invisible, 1-insert, 2-update, 3-delete;

1: initial opT = 0;

2: if s_start.createTime < ri.commit_time < s_stop.createTime then

3 if rj.isDelete == false then

4 return opT=1;

5: else

6 ifis_first then

7 return opT=3;

8 else

9: return opT=1;

10: end if

11: end if

12: else

13: return opT=0;

14: end if

@ Springer

World Wide Web

3.2 INCREDATA Query

A specific SQL statement has been designed to answer time-interval data extraction query,
which is shown as follows:

INCREDATA [coll,...]J/[*] table [SNAPSHOT snapshot [TO snapshot2]] [WHERE ...]

e Users can use INCREDATA query to get incremental data in a given time-interval. The
SNAPSHOT keyword attached to a certain relation defines the time-interval by two
snapshots regarding two time points. Also, the usage of INCREDATA is similar to that
of SELECT. The [coll,...]/[*] syntax gives the projection capacity to this command.
The WHERE syntax can make this command handle filter operation and aggregation
operations are also supported in INCREDATA query.

e We use snapshots to represent the logical time here, in other words, we could expand
INCREDATA query to fetch data that changes between two transactions. The time-
interval here is not only about clock-time, so that we can achieve much precise data
extraction because the data is attached to correspond transactions.

4 System implementation

In this section, we would like to introduce the implementation of our proposed method in
MySQL(InnoDB as the storage engine). With respect to InnoDB, it is a high-performance
storage engine that can be plugged in MySQL, which is based on MVCC mechanism and
uses snapshot isolation to ensure the read consistency.

4.1 Transaction status

The snapshot in InnoDB is defined as ReadView (shown in Figure 8), which is similar
with the structure defined in Figure 5. With respect to ReadView, we can attach the defini-
tion of create_time with the m_creator_trx_id. The ReadView exists in the MySQL system
inherently, which will generate when a transaction starts. The proposed incremental data
extraction method is based on this structure.

However, when the transaction finishes, the ReadView correspond with this transaction
will be released, so the transaction information will be missing for time-interval search.
To solve this problem, we proposed a well-organized structure to store the transaction’s
information. The data structure has been shown in Figure 9. We use 16 bytes to store each
transaction’s start time, finish time and status, specified as follows:

— Start time (7 bytes). Represents the time when the transaction starts.

— Finish time (7 bytes). Represents the time when the transaction stops. Only finished
transactions will have this feature.

— Status (2 bytes). Store transaction status includes not start, still running, committed and
aborted.

One data page contains several transaction’s information records. The transaction ID is
an auto-increment number in MySQL, therefore, the transactions are sorted by transaction
ID in this structure. The page structure is shown in Figure 9. Besides, the transaction ID
is not stored in this structure, for the transaction ID can be clearly represented by the data

@ Springer

World Wide Web

EilslrQeLs The ReadView in Cl ass R ea dVl ew {

private:
trx_id t m_low limit id;
trx_id t m_up_limit id;
trx_id t m_creator trx id;
ids_t m_ids;

public:
bool changes_visible();
bool sees();

55

position. And the mapping function can be represented by (7). Each transaction can be
targeted by the Page_No and the Offsets in that page. With an implementation of data buffer
strategy, this structure gives a decent read-write performance.

_ page_size
amount_per_page ~ inforecord_size
Page,No _ _transaction_id)

amount_per_page
Offsets = (tansaction_id%amount_per_page) x info_record_size

4.2 The implementation of visibility judgment algorithm

As the visibility judgment procedure shown in the Figure 10, a record is regarded as the
input, where the id of transaction that creates or modifies this record is append on it. At
first, the commit status should be checked according to the transaction_information.
If this transaction has been committed, we should check if this transaction is committed
between s_start and s_stop or not. According to Algorithm 1 and 2, the detailed transaction
snapshot differential algorithm based on InnoDB is defined as Algorithm 3. We add this
method in class ReadView, which could be called to judge the visibility of a certain record.
Combined with the robust table-scan method in MySQL, the incremental data can be found
out according to this method.

Transaction No.1 start time | finish time | status

Transaction No.2 start_time | finish time | status

Transaction No.n

Figure 9 The page structure for transaction information

@ Springer

World Wide Web

S1

m_low limit id: 50
m_up_limit_id: 10
Page Page m_creator_trx_id: 25

ROW _ID TR§(§ID dele;eudﬁﬂag ... [T™ start time | finish_time | commit —*[Between sl and s2]

m_low_limit_id: 60
m_up_limit_id: 30
m_creator_trx_id: 55

S2

Transaction Information

Figure 10 The visibility judgment procedure

Algorithm 3 ReadView. changes_visible_incre

Input: r;: A given verison of arecord; s _start: ReadView represents the start point; s _stop:
ReadView represents the stop point; rransaction_information: stores the committed
transactions and their commit time. is_first: 1-latest version, O-previous version;

Output: opT: operation tag: 0-invisible, 1 -insert,2-update,3-delete;

1: initial opT = 0;

2: iftransaction_information.search(r;.trx_id) then
3 if s_start.m_creator trx_id < ri.trx_id < s_stop.m_creator_trx_id then
4 if ri.isDelete == false then

5: return opT=1;

6 else

7 ifis_first then

8: return opT=3;

9: else
10: return opT=1;
11: end if
12: end if
13: else
14: return opT=0;
15: end if
16: else
17: return opT=0;
18: end if

4.3 Storage strategy for historical versions

MySQL is built based on MVCC mechanism, therefore, physical records have been deleted
or updated may still exist in the physical storage, which may become historical versions for
concurrent transactions. However, the system cannot tolerate the immoderate expansion of
these overdue physical records, which may cause the lack of storage space and effect the
system efficiency.

@ Springer

World Wide Web

To solve this problem, MySQL cleans up this kind of physical records periodically, which
is called PURGE. Since PURGE removes batches of historical records periodically, we
apply a method to obtain batches of records that have been removed, and restore them
into another corresponding historical table. In consideration of a better query capacity, the
whole record will be stored and an additional operation type attribute (define whether this
version is generated by delete operation or update operation) is append to each record in the
historical table. Also, based on the facility that tables in MySQL are index-organized tables,
a cluster index on the transaction ID can be inherently applied. Consequently, the historical
version that has been purged can be found in historical table and the time-interval query for
incremental data has a decent efficiency provided by the original MySQL system structure.

5 Optimization

In this section, we designed an optimization theory to conduct an efficient index scan
method to extract incremental data. As the method proposed in the above sections, almost
each record in the relation should be checked whether it is included in the incremental data
set for a certain time-interval. As we known, the minimum buffer unit is always correspond-
ing to the page size, where the less page load from disk to buffer, the better incremental data
query performed.

For the time-interval incremental data extraction, it is obvious that there may exist some
data pages that all the records on them are not include in a specific time-interval. In this
paper, we consider about the page in which all the records are created before a specific time-
interval, we call this kind of page as “really old page”. Exactly, some extremely old pages
can be skipped for scanning and will not be loaded to the buffer for the records on them are
definitely not included in the incremental data.

As is shown in Figure 11, we construct a B+tree index on transaction ID, where the prun-
ing rule is according to the transaction ID attached on each record. According to this index,
we can easily target to a place where transaction ID is equal with s_start.lower Bound.
Since transactions that finish before the lowerBound are definitely visible to s_start, the
data operated by these transactions cannot be incremental data. Therefore, an efficient index
scan can be conducted for “really old page” will be skipped.

For example, if the time-interval shows that incremental data is operated by transaction
between 1000 and 1300, as to Figure 11, we can easily put the index scan pointer to the
record whose transaction ID is 1000. Therefore, the pages pointed by key after 1000 need to
be loaded to the buffer and do visibility judgment for each record, the pages that are pointed
by key before 1000 do not need to do so.

Algorithm 4 indicates the index scan flow. We first get the first node in the index, and
then keep scan the index. If the page should be scanned, we will call the record visibility
judgment algorithm to check the visibility of each record. Suppose a relation is stored in
N pages, so the total I/O for scan this relation should be N % M, where M represents the
average time cost for loading one page. If there are P “really old page” in this relation, the
total I/O for index scan should be (N — P) % M. Thus, the I/O cost would be reduced by cut
down the page loading times, where the incremental data extraction performance would be
boosted. Besides, suppose their are K records in each page, the visibility check operation
times will reduce from N %« K to (N — P) * K.

@ Springer

World Wide Web

Algorithm 4 Index Scan Algorithm

Input: R:source relation; Index : index on R; s_start: Snapshot represents the start point;
s_stop: Snapshot represents the stop point;
Output: Result set R'.
1: iter < Index.search(s_start.lowerbound);
2: while iter.hasNext() do
3: page < iter.get Page();
4 R'.add(page_scan()); > according to record visibility judgment algorithm
5 iter <— Index.getNext();
6: end while

6 Experiment

In this section, extensive experiments are conducted over the standardized Sysbench [20]
benchmark, which demonstrate the efficiency of our proposed method. Compared with
other incremental data extraction methods, the proposed method in this paper gives a higher
system performance and greater query efficiency.

All experiments are conducted on a Linux Server with Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz, 128G of memory and CentOS 7 operating system. Our comparison exper-
iments are mainly based on MySQL 8.0.3, and approaches for incremental data extraction
are generated into MySQL 8.0.3 respectively.

Comparative approaches We compare the following approaches in the experiments.

— Log based extraction (a.b.a. LBE). LBE is a method to obtain the incremental data by
parsing the system log of RDBMS. Here we use the binary log in MySQL which stores
the database changes to get the incremental data and evaluate the system throughput.

— Trigger based extraction (a.b.a. TBE). TBE means that there will be a trigger attached
on the source relation to trace the insert, update and delete operation. Here we use the
trigger provided by MySQL to conduct this method. Insert and update triggers are attached
on the source table, and a corresponding table to store the incremental data is created.

— Timestamp based extraction (a.b.a. TSBE). TSBE appends an additional timestamp
attribute to the source table, which represents the time when this data has been gener-
ated. Therefore, when a record is inserted or updated in the source table, the clock time
will store in the additional timestamp attribute.

— INCREDATA represents our proposed method, which is a MVCC-based method to
extract time-interval incremental data.

Datasets and experimental scenarios We conduct the experiments using the default
datasets generated by Sysbench benchmark [20]. Dataset DS1 contains 2 millions records,
which represents small amount of data, and DS2 has 5 millions records, which is a big data
volume dataset. Besides, we construct two experimental scenarios to simulate the account
balance changes in the Tencent’s service charging system. TDSQL [21] is a distributed
database system, which carries almost all the digital payment-related business in Tencent.

@ Springer

World Wide Web

Start scanning ---

~
> A

| 1500 | \500-‘1000\ | 1000-1500 ----»end scanning

¢ === ———

Page Head Page Head Page Head Page Head
recordl recordl recordl recordl
record2 record2 record2 o record2
record3 record3 record3 record3

<— much older page, skip it —> .
<—— newer page, scanit —

Figure 11 The index structure and index scan flow

Therefore, we collect and analyze the data in TDSQL and conclude the following experi-
mental scenarios. We mainly consider about the alternative happened in the account table
that contains information about user balance, user identification, etc.

— Scenario.A simulates the situation that Tencent are dealing with other companies. The
number of companies in the charging system is quite stable, so we ignore the com-
pany registrations in a way. We perform the operations on the account table with
proportion like insert : delete : update = 0:1:9 to illustrate this business-to-business
situation.

— Scenario.B simulates the situation that QQ or WeChat [22] users are buying the ser-
vice provided by Tencent. The users can register their accounts by themselves, so the
insert operations on the account table are quite frequent. We perform the operations
on the account table with proportion like insert : delete : update =2:1:7 to show this
customer-to-business situation.

6.1 Comparison among incremental data extraction methods

We can easily give a comparison among existing incremental data extraction methods with
INCREDATA. Several aspects shown in Table 2 can be judged to show the advantages and
disadvantages of each method. The insert, delete and update denote kinds of incremental
data, each of them represents whether this kind of the incremental data can be distinguished.
The time-interval extraction denotes whether the method can extract the incremental data
in any time-interval. The system delay denotes whether this method will impact on the
system efficiency. The data invasion denotes whether the method will affect the original
data relation.

@ Springer

World Wide Web

Table 2 Comparison among incremental data extraction methods

Insert Delete Update Time-interval extraction System delay Data invasion

LBE v v v i

TBE v i v i v

TSBE J J
INCREDATA ./ J J J

Table 2 shows that LBE and INCREDATA perform better in the given aspects. They not
only can support to judge the incremental type, but also can get incremental data of any
given time-interval. Otherwise, TBE will impact on system efficiency, which may cause
system delay in a way.

With respect to TSBE, it can neither avoid data invasion nor distinguish the incremental
type. Therefore, TSBE method can hardly be used to extract incremental data in realistic
production environments. Therefore, we will not evaluate the performance of TSBE method
in the following experiments.

6.2 System throughput evaluation

We now apply several approaches into MySQL respectively, and evaluate the system per-
formance. The system efficiency is reflected on the average number of transactions finished
per second (a.b.a. ps), which can be collected by Sysbench benchmark [20]. By combining
different datasets and experimental scenarios, we obtain 4 experiments, which are: (1) DS1
and Scenario.A; (2) DS1 and Scenario.B; (3) DS2 and Scenario.A; (4) DS2 and Scenario.B.
The baseline system throughput is reflected by the original MySQL’s ¢ps. Meanwhile, the
system influence can be indicated by comparing the tps of MySQL applied with a data
extraction method with the original MySQL’s ¢ps. In this place, we mainly compare the
throughput of LBE, TBE and INCREDATA, but TSBE is excluded for it cannot provide
some key functions like judging the incremental type, etc.

We conduct the experiments with following steps. (1) Create a database and initialize the
datasets. (2) Use the Sysbench script to execute insert, delete and update operations within
the proportion defined in the specific scenario. We set the concurrent threads number to 500,
and execute the script for 30s, 60s, 90s and 120s respectively. (3) Evaluate the fps within
the certain time period.

Figure 12 shows the system performance based on different datasets and scenarios. The
X axis execute time means how long the Sysbench script executes and the y axis represents
tps. From the results, we observe that LBE and INCREDATA do not cause the system delay,
but TBE affects the system efficiency. The tps of MySQL generated with LBE or INCRE-
DATA is roughly same as #ps of original MySQL, but #ps of MySQL with TBE reduces to
15%. With respect to TBE, the time-consuming trigger operation will block the transaction
execution to some extent. Every modification on the record will cause a correspond trigger
operation, which will require a table-lock and hinder the transaction processing. Besides,
the system performance of the LBE and INCREDATA is stable on different experimental
datasets and scenarios. Therefore, LBE and INCREDATA perform better than TBE in sys-
tem throughput evaluation, and which is better between LBE and INCREDATA cannot be
distinguish by system throughput evaluation.

@ Springer

World Wide Web

7000 T

MySQL & 12000 [" MySQL &x5%3 TBE memm |
6000 | LBE : 1
10000 []
5000 1
8000 1
2 4000 1 2
d £ 6000 1
* 3000 4 F
2000 | 4000 1
1000 — 2000 1
0 R b 0 8 !
60 90 30 60 90 120
#execute time (s) #execute time (s)
(a) DS1 + Scenario.A (b) DS1 + Scenario.B
7000 T T - -
12000 - MySQL Xxxz=1 TBE me—— -
6000 | 1 :
10000 1
5000 1
8000 1
2 4000 1 2
6000 1
® 3000 1 #
2000 - | 4000 1
1000 1 2000 1
30 60 90 30 60 90 120
#execute time (s) #execute time (s)
(c) DS2 + Scenario.A (d) DS2 + Scenario.B

Figure 12 System throughput evaluation

6.3 Query efficiency evaluation

We now evaluate the query efficiency of extracting incremental data with different approaches.
The experiments conduct as follows: (1) We use the datasets after executing Sysbench script
for 120s, where the incremental data can be generated. (2) Extract the incremental data in
a given time-interval. We set the start time of the time-interval as 5s, 35s, 65s, 95s after
Sysbench script execution and assign the time-interval as Ss. (3) Evaluate the time cost.

As for LBE, the time cost is represented by the sequential scan of the binary log files
provided by MySQL. As for TBE and INCREDATA, the time cost is calculated by the
response time of a specific SQL command.

We collect the statistics of I/O cost of INCREDATA. Table 3 shows the total page size
that contains all the pages that transfer between buffer and disk. From the results, we can
see that the later the start time is, the smaller the total page size is. This conclusion matches
the optimization theory that only “really old page” will be skipped during the index scan.
Besides, compared with the full table scan, the index scan can reduce I/O cost to 25%
approximately when start time is set as 95s.

Figure 13 illustrates the time cost of several approaches when extracting a certain time-
interval data, the x axis start time means how long after Sysbench script execution and the
y axis time cost means the time cost to get the time-interval incremental data.

@ Springer

World Wide Web

Table 3 Statistics of I/O cost (KB)

Ss 35s 65s 95s Table scan
DSI1 + scenario.A 833312 657984 438784 219616 877664
DS1 + scenario.B 1055232 886064 666864 397696 1077696
DS2 + scenario.A 2187488 1753504 1210208 876736 2192416
DS2 + scenario.B 2554928 2150944 1712576 1274176 2589856

From Figure 13, we observe that the time cost of INCREDATA is less than the time cost
of TBE. That is because TBE should conduct range search on the timestamp attribute, which
needs a large amount of time because the physical records are not sort by the timestamp and
the range search on an unsorted attribute is a time-consuming operation. However, INCRE-
DATA applies an efficient index on transaction ID both in original and historical table, the
physical records in historical table is sorted by transaction ID. When doing the query to
extract time-interval incremental data, the index on transaction ID can quickly target a place
where the records before it cannot be incremental data definitely.

Additionally, when the start time increases, the time cost of INCREDATA decreases, but
the time cost of LBE rises rapidly. The reason can be explained as: (1) With the reduce of
I/O cost, the query response time of INCREDATA can reduces correspondingly. (2) With

LBE —%—

TBE - & -
12 [INCREDATA --¥--

Z s
3 S
E S E
By T

20 7 T T e

O L L

5 35 65 95
(c) #start time (s) (c) #start time (s)
(a) DS1 + Scenario.A (b) DS1 + Scenario.B

LBE —%—
) TBE - & -
12 [INCREDATA --¥--

#time cost (s)
#time cost (s)

5 35 65 95

(c) #start time (s) (c) #start time (s)
(c) DS2 + Scenario.A (d) DS2 + Scenario.B

Figure 13 Query time cost

@ Springer

World Wide Web

the continuous running of RDBMS, the log records will append to the log file and the
log file will become larger and larger. Therefore, the time cost of LBE becomes longer
with the increment of start time because much larger file should be scanned to extract the
incremental data and the sequential scan will read log records from the beginning of the log
file. According to the experimental results above, we can conclude that the performance of
using INCREDATA to extract time-interval incremental data is much better than using other
approaches.

7 Conclusion

In this paper, we investigate the problem of doing efficient time-interval data extraction in
MVCC-based RDBMS. We propose a snapshot-based method to extract incremental data
based on the fact that each record is inherently associated with some transaction infor-
mation. We elaborate how to integrate our method into existing open-sourced RDBMS
and propose a declarative way to fetch the incremental data. An index-based optimization
techniques are proposed to boost the extraction performance. Extensive experiments are
conducted over the standardized Sysbench benchmark to show that our proposed method is
robust and efficient.

Acknowledgments We would like to thank the anonymous reviewers for their valuable comments. This
work was supported by the National Natural Science Foundation of China (61502504, 61732014) and the
Tencent Research Grant for Renmin University of China.

References

1. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM Comput. Surv.
(CSUR) 13(2), 185-221 (1981)

2. Cahill, M.J., Rohm, U., Fekete, A.D.: Serializable isolation for snapshot databases. ACM Trans. Datab.
Syst. (TODS) 34(4), 20 (2009)

3. Canal. https://github.com/alibaba/canal

4. Doan, A., Naughton, J.F.,, Ramakrishnan, R., Baid, A., Chai, X., Chen, F., Chen, T., Chu, E., DeRose, P.,
Gao, B., et al.: Information extraction challenges in managing unstructured data. ACM SIGMOD Rec.
37(4), 14-20 (2009)

5. Labio, W., Garcia-Molina, H.: Efficient Snapshot Differential Algorithms in Data Warehousing. Tech.
rep., Stanford InfoLab (1996)

6. Li, H., Feng, Y., Fan, P.: The art of Database Transaction Processiong: Transaction Management and
Concurrency Control. China Machine Press (2017)

7. Lu, W., Fung, G.P.C., Du, X., Zhou, X., Chen, L., Deng, K.: Approximate entity extraction in temporal
databases. World Wide Web 14(2), 157-186 (2011)

8. Lu, W., Hou, J., Yan, Y., Zhang, M., Du, X., Moscibroda, T.: MSQL.: efficient similarity search in metric
spaces using SQL. VLDB J. 26(6), 829-854 (2017)

9. Ma, K., Yang, B.: Log-based change data capture from schema-free document stores using mapreduce.
In: 2015 International Conference on Cloud Technologies and Applications (CloudTech), pp. 1-6 (2015).

10. McWherter, D.T., Schroeder, B., Ailamaki, A., Harchol-Balter, M.: Priority mechanisms for OLTP and
transactional Web applications. In: ICDE. IEEE Computer Society, pp. 535-546 (2004)

11. Meehan, J., Tatbul, N., Zdonik, S., Aslantas, C., Cetintemel, U., Du, J., Kraska, T., Madden, S., Maier,
D., Pavlo, A., Stonebraker, M., Tufte, K., Wang, H.: S-store: Streaming meets transaction processing.
Proc. VLDB Endow. 8(13), 2134-2145 (2015)

12. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel:
Interactive analysis of Web-scale datasets. Proc. VLDB Endow. 3(1-2), 330-339 (2010)

@ Springer

https://github.com/alibaba/canal

World Wide Web

13.

14.
15.

16.

17.

18.

19.
20.
21.
22.
23.
24.

25.

26.

Ports, D.R.K., Grittner, K.: Serializable snapshot isolation in postgresql. Proc. VLDB Endow. 5, 1850—
1861 (2012)

QQ. https://im.qq.com

Ram, P, Do, L.: Extracting delta for incremental data warehouse maintenance. In: Proceedings of 16th
International Conference on Data Engineering (Cat. No.0OCB37073), pp. 220-229 (2000).

Reed, D.P.: Naming and Synchronization in a Decentralized Computer System. Ph.D. thesis Mas-
sachusetts Institute of Technology (1978)

Revilak, S., O’Neil, P.,, O’Neil, E.: Precisely serializable snapshot isolation (pssi). In: 2011 IEEE 27th
International Conference on Data Engineering, pp. 482—493 (2011)

Stonebraker, M.: The design of the postgres storage system. In: Proceedings of the 13th International
Conference on Very Large Data Bases, VLDB ’87, pp. 289-300. Morgan Kaufmann Publishers Inc., San
Francisco (1987)

Stonebraker, M., Rowe, L.A., Hirohama, M.: The implementation of postgres. IEEE Trans. Knowl. Data
Eng. 2(1), 125-142 (1990)

Sysbench Benchmark. https://github.com/akopytov/sysbench

Tencent Distributed SQL System (TDSQL). http://tdsql.org

‘WeChat. https://weixin.qq.com

Wu, S., Ren, W,, Yu, C., Chen, G., Zhang, D., Zhu, J.: Personal recommendation using deep recurrent
neural networks in NetEase. In: 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016. pp. 1218-1229 (2016)

Yabandeh, M., Gémez Ferro, D.: A critique of snapshot isolation. In: Proceedings of the 7th ACM
European Conference on Computer Systems, pp. 155-168. ACM (2012)

Zhang, C., Sterck, H.D.: Supporting multi-row distributed transactions with global snapshot isolation
using bare-bones hbase. In: 2010 11th IEEE/ACM International Conference on Grid Computing, pp.
177-184 (2010)

Zhang, D., Li, Y., Cao, X., Shao, J., Shen, H.T.: Augmented keyword search on spatial entity databases.
VLDB J. https://doi.org/10.1007/s00778-018-0497-6 (2018)

@ Springer

https://im.qq.com
https://github.com/akopytov/sysbench
http://tdsql.org
https://weixin.qq.com
https://doi.org/10.1007/s00778-018-0497-6

	Efficient time-interval data extraction in MVCC-based RDBMS
	Abstract
	Introduction
	Preliminaries
	Problem definition
	Related work
	Incremental data extraction
	Multi-version concurrency control

	System overview
	Snapshot-based incremental data extraction method
	INCREDATA Query

	System implementation
	Transaction status
	The implementation of visibility judgment algorithm
	Storage strategy for historical versions

	Optimization
	Experiment
	Comparative approaches
	Datasets and experimental scenarios

	Comparison among incremental data extraction methods
	System throughput evaluation
	Query efficiency evaluation

	Conclusion
	Acknowledgments
	References

