Knowl Inf Syst (2018) 56:663-690 @ CrossMark
https://doi.org/10.1007/s10115-017-1104-7

REGULAR PAPER

Mining frequent subgraphs from tremendous amount of
small graphs using MapReduce

Zhe Peng! - Tongtong Wang! - Wei Lu! - Hao Huang? - Xiaoyong Du! -
Feng Zhao® - Anthony K. H. Tung?

Received: 28 July 2016 / Revised: 15 May 2017 / Accepted: 20 August 2017 /
Published online: 6 October 2017
© Springer-Verlag London Ltd. 2017

Abstract Frequent subgraph mining from a tremendous amount of small graphs is a primitive
operation for many data mining applications. Existing approaches mainly focus on central-
ized systems and suffer from the scalability issue. Consider the increasing volume of graph
data and mining frequent subgraphs is a memory-intensive task, it is difficult to tackle this
problem on a centralized machine efficiently. In this paper, we therefore propose an efficient
and scalable solution, called MRFSE, using MapReduce. MRFSE adopts the breadth-first
search strategy to iteratively extract frequent subgraphs, i.e., all frequent subgraphs with
i + 1 edges are generated based on frequent subgraphs with i edges at the ith iteration. In our
design, existing frequent subgraph mining techniques in centralized systems can be easily
extended and integrated. More importantly, new frequent subgraphs are generated without
performing any isomorphism test which is costly and imperative in existing frequent sub-
graph mining techniques. Besides, various optimization techniques are proposed to further
reduce the communication and I/O cost. Extensive experiments conducted on our in-house
clusters demonstrate the superiority of our proposed solution in terms of both scalability and
efficiency.

Keywords Frequent subgraph mining - MapReduce - [somorphism-testing-free

1 Introduction

Graphs are ubiquitous and explored in a wide spectrum of applications such as cheminfor-
matics [20], bioinformatics [2,14], and object recognition in image processing [18,22]. As

B Wei Lu
lu-wei@ruc.edu.cn

School of Information and Key Lab of Data Engineering and Knowledge Engineering, MOE,
Renmin University of China, Beijing, China

State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

School of Computing, National University of Singapore, Singapore, Singapore

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1104-7&domain=pdf

664 Z.Peng et al.

a fundamental data structure, there have been extensive studies on graphs and their prop-
erties. One of the most important research topics for graphs is frequent subgraph mining,
which returns all subgraphs that are contained in at least 7 graphs from a tremendous amount
of small graphs, where T is a user-defined support. Frequent subgraph mining is a primi-
tive operation for a variety of data mining applications, such as extracting frequent patterns
from chemical compounds, identifying the relationship between chemical compounds, and
building graph indexes to facilitate subgraph containment searches.

Existing frequent subgraph mining approaches in centralized systems can be classi-
fied into two categories: Apriori-based approaches [13,15] and pattern-growth approaches
[4,11,12,21,24]. Both Apriori-based and pattern-growth approaches follow the generation-
and-verification paradigm to mine frequent subgraphs. Apriori-based approaches iteratively
extract the frequent subgraphs in a breath first search fashion. New frequent subgraphs with
size i edges (or vertices) are generated by frequent subgraphs with size i — 1 edges (or
vertices). Pattern-growth approaches extract the frequent subgraphs in a depth-first search
(DFS) fashion. New frequent subgraphs with size i edges' are enumerated by appending one
edge to a frequent (i — 1)-subgraph. Since a new subgraph can be generated by multiple
subgraphs (pattern-growth approaches) or subgraph pairs (Apriori-based approaches), var-
ious optimization techniques in existing approaches are proposed to reduce the generation
spaces. Besides, they also focus on designing effective labeling techniques. In this way, new
generated subgraphs with the same label are considered to be isomorphic, and hence, frequent
subgraphs can be verified by aggregating and counting the number of graphs that contain
them.

Existing frequent subgraph mining approaches are memory-intensive. Considering the
AIDS Antiviral Screen dataset consisting of only 43,905 chemical compounds, these pattern-
growth approaches including gSpan [24], Mofa [4], FFSM [11, 12] and Gaston [21] consume
300, 600MB, 1.2 and 1.3 GB memory usage, respectively, when the frequent threshold is
set to 5% of the cardinality of the dataset [9]. Consider the forever increasing data size. For
example, SCIFinder,® which provides the world’s largest collection of chemistry and related
science information, reports that about 4000 new compound structures are added each day.
Obviously, it is not appropriate to employ these in-memory pattern-growth approaches, and
somehow difficult to perform frequent subgraph mining on a centralized machine efficiently.

MapReduce [8] was recently proposed as a programming model for processing data-
intensive applications in a distributed computing environment with clusters of computers.
It has gained wide acceptance and been applied in various application domains due to its
simplicity, flexibility, fault tolerance and scalability. It is therefore a natural choice platform
for extracting frequent subgraphs over large-scale graph datasets. In this paper, we study how
to mine frequent subgraphs using MapReduce. We propose a robust, efficient and scalable
solution, called MRFSE. MRFSE mines frequent subgraphs iteratively, i.e., MRFSE mines
all frequent i-subgraphs at the ith iteration (i > 1). Execution of MRFSE at each iteration
follows the generation-and-verification paradigm and employs a single MapReduce job to
mine frequent i-subgraphs. The mappers generate a superset of frequent i -subgraphs based
on frequent i — 1-subgraphs obtained in the previous round (i > 1). The reducers verify
each candidate in the superset and output all frequent i-subgraphs, which are then taken as
the input of next MapReduce Job. We iterate until no new frequent subgraphs can be found.

! In the remainder of this paper, an i-subgraph is referred to as a subgraph with i edges.
B http://dtp.nci.nih.gov/docs/aids/aids_data.html.

3 http://www.cas.org.

@ Springer

http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://www.cas.org

Mining frequent subgraphs from tremendous amount of... 665

As discussed before, existing frequent subgraph mining approaches are memory-intensive.
To tackle this problem, we do not process the whole dataset in main memory simultaneously.
Instead, we process every graph g separately, from which we mine every possible frequent
subgraph that g contains. Specifically, the whole dataset D is first divided into m disjoint
subsets and each subset D; is sent to a single machine M;. During iterations, M; is responsible
for mining frequent subgraphs from graphs in D; unchangeably. In our design, each graph
g is represented as a set of key/value pairs. These pairs are considered as a whole and taken
as the input of map function. The key of the pair is the label of a frequent i-subgraph that g
contains. The value of the pair consists of a set of mappings that record every subgraph in g
that is graph isomorphic to the key. In this way, at the i th iteration, all possible frequent (i —1)-
subgraphs that g contains and their corresponding mappings are maintained. We coordinate
machines to mine all size-i frequent subgraphs using a single MapReduce Job. At the ith
iteration, mappers in M; issue parallel scan over graphs in D;. The map function takes each
g as the input. Existing Apriori-based and pattern-growth approaches can be easily extended
to update g by replacing (i — 1)-subgraphs with i-subgraphs associated with corresponding
mappings. Besides, labels of new generated i-subgraphs are shuffled to reducers. Reducers
verify and output frequent i-subgraphs by aggregating the same labels of subgraphs.

In this paper, we make the following contributions:

— We propose a generic solution, called MRFSE, to iteratively mine frequent subgraphs.
Existing techniques can be easily extended and integrated into our solution.

— MREFSE mines frequent subgraphs over each graph in the dataset separately. This
mechanism brings three benefits. First, new frequent subgraphs are generated with-
out performing graph isomorphism test which is imperative and expensive in existing
approaches. Second, it is unnecessary to shuffle mappings from mappers to reducers.
Consider that often these mappings are prohibitively large. MRFSE is able to save a
large amount of network bandwidth. Third, as processing each graph separately, com-
pared with existing approaches, MRFSE consumes less memory cost.

— We conduct extensive experiments on our in-house clusters to demonstrate the superiority
of our proposed solution in terms of both scalability and efficiency. The preliminary study
of this work is reported in [19].

The remainder of the paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 introduces the necessary background knowledge and provides the problem definition.
Section4 describes an overview of the solution. Section 5 presents the extension of existing
techniques to generate new subgraphs in our solution. Section 6 reports the experimental
results, and Sect. 7 concludes the paper.

2 Related work

Frequent subgraph mining is a well-studied research area in the centralized systems. Typical
Apriori-based algorithms include AGM [13] and FSG [15]. In AGM, all frequent subgraphs
with i + 1 vertices are generated by two frequent subgraphs with i vertices that share a
common subgraph with i — 1 vertices. While in FSG, frequent subgraphs with i + 1 edges are
generated by two frequent subgraphs with i edges that share a common subgraph with i — 1
edges. Instead of following the breadth-first mechanism in Apriori-based algorithms, pattern-
growth algorithms generate frequent subgraphs following the depth-first mechanism. At each
iteration, they first enumerate all frequent i-subgraph candidates by appending one edge in
frequent 1-subgraphs to all frequent (i — 1)-subgraphs, then remove duplicated candidates

@ Springer

666 Z.Peng et al.

by performing graph isomorphism test operation, and finally verify the frequent i -subgraphs
by collecting the number of graphs that contain them. The most important work in this
direction is gSpan [24]. gSpan builds a lexicographic order (termed as DFS code) among
subgraphs. Based on this order, first, new subgraphs are generated by its parent subgraph
with the minimum DFS code; second, generation of new subgraphs are restricted based on
a certain rule so as to reduce the enumeration space. For this reason, gSpan mines frequent
subgraphs without generating candidates. Although other pattern-growth algorithms, such as
MOFA [4], FFSM [11], SPIN [12] and GASTON [21], propose various labeling techniques
and optimization strategies to reduce the enumeration space of mining frequent subgraphs,
gSpan remains as one of the most widely used approaches to extracting frequent subgraphs.
For example, gSpan is popularized to build graph indices in glndex [25], FG-Index [7] and
FG*-Index [6]. In our work, we focus on the extension of gSpan while other techniques can
be similarly adapted in our solution as well.

Recently, there is an increasing interest on designing new approaches to mining fre-
quent subgraphs using MapReduce. In this field, the state-of-the-art approaches follow the
generation-and-verification paradigm to mine frequent subgraphs. Bhuiyan and Hasan [3],
Hilletal. [10], Liuetal. [17] and Lu et al. [19] mine frequent subgraphs iteratively, and at the
ith iteration, all frequent i-subgraphs are extracted (i > 1). Hill et al. [10] and Liu et al. [17]
issue two MapReduce jobs at each iteration. In the first MapReduce job, for every graph g of
the dataset, the mappers shuffle all frequent (i — 1)-subgraphs that g contains and correspond-
ing mappings to reducers, and reducers generate frequent i-subgraph candidates of g. In the
second MapReduce job, all i-subgraphs from different mappers that are graph isomorphic to
each others are aggregated in reducers and all frequent i-subgraphs are extracted. Hill et al.
[10] and Liu et al. [17] are inefficient mainly due to three reasons. First, no rules are adopted
to restrict the generation of new subgraphs, leading to an exponential increase in the size of
the generation space. Second, the size of mappings could be prohibitively large, especially
in a large-scale dataset, and shuffling these mappings causes an expensive communication
cost. Third, due to the lack of unified lexicographic order of subgraphs, it is necessary to
perform graph isomorphism test for subgraphs when aggregating the occurrence of isomor-
phic subgraphs. Bhuiyan and Hasan [3] and Lu et al. [19] utilize the techniques in gSpan to
overcome the first and third limitations of [10]. First, each subgraph is represented as a label,
which is termed as minimum DFS code, and two subgraphs with the same minimum DFS
code mean they are isomorphic. For this reason, [1,3,19] collect all isomorphic subgraphs by
simply aggregating the same minimum DFS code, and hence avoid expensive isomorphism
test cost. Second, subgraphs are ordered based on their corresponding minimum DFS codes
and new subgraphs are generated merely from its parent graph with the minimum DFS code,
hence reducing the size of the generation space. The main difference between [19] and [3] is
the way, i.e., following the bottom-up and top-down paradigm, respectively, to generate the
frequent subgraph candidates. By well organizing necessary information used in gSpan, [3]
enumerates frequent i-subgraph candidates by appending every possible frequent 1-subgraph
to frequent (i — 1)-subgraphs, removes duplicated candidates by performing graph isomor-
phism test, and verifies every frequent i-subgraph s by counting the number of graphs that
contain s. While [19] generates frequent i -subgraph candidates for every graph g separately
by appending every possible frequent 1-subgraph to frequent (i — 1)-subgraphs that both
g contain, duplicated subgraphs can be detected by simply comparing their vertex IDs, and
hence avoiding the graph isomorphism test which is a costly operation. Different from the
above three works that iteratively mine frequent subgraphs, [1,16] issues two MapReduce
jobs, with one to identify all frequent subgraph candidates, with the other to verify whether
each candidate is frequent or not. The whole dataset is first divided into m disjoint subsets,

@ Springer

Mining frequent subgraphs from tremendous amount of... 667

and each subset is sent to a single machine. The rational behind [16] is that if a subgraph s
is a frequent, s must be reported as a locally frequent subgraph in some machine. For this
reason, [16] extracts every possible frequent subgraph as a candidate in the first MapReduce
job. To collect the complete frequency of a subgraph s, it is necessary to further compute the
frequency for s that is locally infrequent in other machines. To verify whether s is frequent
or not, [16] issues another MapReduce Job to compute the frequency of every candidate. To
avoid generating a huge number of candidates, the frequency of s that is locally infrequent
in some machines is still computed. In this way, the upper bound of the frequency of s can
be refined and if the upper bound is less than the frequency support, s can be pruned. The
shortcomings of [16] are twofold. First, it is difficult to select such a set of subgraphs that
are locally infrequent but required to compute the frequency. Improper selection will cause
either a huge number of candidates or unnecessary computations (the frequency of a sub-
graph is computed across multiple machines but finally verified as an infrequent subgraph).
Second, the selection problem will become increasingly difficult if the number of machines
grows (image the worst case that the number of machines equals that of the graphs). Aridhi
et al. [1] propose a density-based data partitioning strategy to balance the workload. We do
not compare MRFSE with [1] because [1] mines frequent subgraphs approximately.

This paper is an extension of our previous work [19]. As pointed out before, all existing
iterative approaches are necessary to shuffle mappings, the size of which is prohibitively
large, from mappers to reducers, causing an expensive communication cost. In this work,
we introduce a new solution that is able to avoid shuffling mappings and hence improve the
mining performance.

3 Preliminaries

In this section, we first formally define the problem of frequent subgraph mining and then
present a brief review of the gSpan [24]. Table 1 summarizes the notations used throughout
this paper.

3.1 Frequent subgraph mining

For ease of presentation, we model each complex structure as an undirected, labeled graph.
Typically, a labeled graph g is able to be represented as a quadruple (Vy, Eg, Lg,), in
which V, is the set of vertices, E is the set of undirected edges, Ly is a set of labels, and [,
is a labeling function that maps every vertex and edge to a single label in L. Given a graph
g, we use [g[v] to denote the label of vertex v and ¢ [u, v] to denote the label of edge (u, v)
connecting vertices # and v in g. For the sake of brevity, we use g.id to denote the identifier
of graph g.

Given two graphs g and s, we can verify whether s is a subgraph of g (i.e., g is a supergraph
of s or g contains s) by performing subgraph isomorphism, which is defined as follows:

Definition 1 (Subgraph Isomorphism C) Given a graph s = (V;, Es, Ls, I;) and a graph
g = (Vg, Eg, Lg, lg), s is said to be subgraph isomorphic to g (denoted as s C g) if and
only if there exists an injective function f : V; — V, such that (1) Yv € Vj, we can have
f) € Vg, and [;(v) = lo(f(v)); (2) Y(u,v) € Ej, we can have (f(u), f(v)) € Vg, and
fslu, vl = folf(u), f(v)].

@ Springer

668

Z.Peng et al.

Table 1 Symbols and definitions

Symbols Definitions

D A collection of graphs

g A graph in D

Ve The set of vertices in g

Eg the set of edges in g

g.id The graph identifier of g in D

lg[v] The label of vertex v in g

lglu, v] The label of edge (u, v) connecting u and v in g

K A frequent subgraph candidate

sCg s is a subgraph of g (or g is a supergraph of ¢)

g5 A subgraph in g built by embedding e and subgraph s
s.D An ID list of graphs in D containing s

T The frequent threshold

F; All size-i frequent subgraphs contained in the dataset
Fig Subgraphs in F; that graph g contains

Ff A superset of Flg

& All embeddings in g, Ve € £, g5 is graph isomorphic to subgraph s

(a) 91

Fig. 1 An Example of Subgraph Isomorphism. ag, b g> and ¢ g3

Example 1 (Subgraph Isomorphism) Figure 1 shows an example of three undirected,
labeled graphs. According to Definition 1, we can find that g3 C g; since there exists an
injective function f: {0 — 0,1 — 1,2 — 4}, while g3 SZ 2.

Particularly, given two graphs s and g, if s € g and |V| = |V,]|, then we say s is graph
isomorphic to g. That is, graph isomorphism is a special case of subgraph isomorphism.

Definition 2 (Embedding) Given a subgraph s and a graph g, suppose s € g and f is
an injective function. An embedding e is a sequence of vertices in V, that are mapped to
the vertices of Vy using f,ie.,e = [f(v1),..., f(v), ..., f(vv,], where v; € V and

fi) € vg~

Figure 2 shows two subgraph sy, s» and the embeddings in g; (shown in Fig. 1a) for them,
respectively. In practice, an embedding acts like an injective function. Given a subgraph s

@ Springer

Mining frequent subgraphs from tremendous amount of... 669

Subgraph Embeddings Subgraph Embeddings
s @®4® | 01 [104 |51 | 1531 [(®5® | 141 | 41

Fig. 2 An example of embeddings

Order 0 1 2 3 4
Sequence | (0,1,A,3,B) | (1,2,B,a,C) | (1,3,B,a,D) | (3,4,D,a,A) | (3,5D,a,E)

Fig. 3 An example of DFS code

and a graph g, we can build a unique subgraph g; in g based on an embedding e such that g}
is graph isomorphic to s. It is worth mentioning that there might exist multiple embeddings
for a subgraph sg in g for s in that several vertices and edges are attached with the same
labels (taking s; in Fig.2 for example).

A subgraph s is called connected if for any two vertices u, v € Vi, there exists a path from
u to v in s. Given a graph collection D and a subgraph s, the posting list of s is defined as
an ID list of graphs in D containing s, i.e., s.D = {g.id|g € D,s C g}. Given a subgraph
s, s is said to be frequent if |s.D| > T, where T is called frequency threshold which is
a user-defined number. In many applications, users are more concerned with the frequent
recurring components of graphs [23]. Hence, in this paper, we focus on identifying the
frequent subgraphs that are connected. The frequent unconnected subgraphs can be derived
based on these frequent connected subgraphs using a frequent itemset mining algorithm [15].
Problem Definition Given a graph collection D and a frequency threshold T, the problem of
Frequent subgraph mining is to identify all connected subgraphs which are contained in at
least T graphs of D.

In the remainder of this paper, we refer to a subgraph as a connected subgraph. For the
sake of brevity, we also use i-subgraph to denote a subgraph with i edges, and F; to denote all
frequent subgraphs in D with i edges. Given an i-subgraph s, we say s’ is a child of s when
s C s’ and |Ey| =i + 1; similarly, we say s’ is a parent of s when s’ C s and |Ey| =i — 1.
An enumeration operation of an i-subgraph s is to enumerate all children of s by appending
one edge from every possible vertex in V.

3.2 Minimum DFS code and gSpan

The key technique of the gSpan algorithm is its DF'S coding, by which each subgraph can be
translated to a collection of DFS codes. Each DFS code is an edge sequence, generated by
performing a depth first search (DFS) on the edges of the subgraph, i.e., edges in the DFS
code are ranked by the discovery order in the DFS search. Correspondingly, each vertex in
the subgraph is also marked by its discovery order. In the DFS coding technique, an edge in
the DFS code is represented by a 5-tuple, (i, j, [s[i], Is[i, j1, Is[j]), where [s[i], Is[i, j1, Is[j]
are the labels of vertex i, edge (i, j), and vertex j in the subgraph s, respectively. We show a
DFS code consisting of five ordered edges in Fig. 3 for the graph g> shown in Fig. 1b. Since
there exist multiple depth-first search trees for a given subgraph s, s can have many DFS
codes. Therefore, a lexicographic order is used so that every two DFS codes can be compared
with each other [24].

Property 1 (Minimum DFS Code) [24] Given an i-subgraph s, let parent(s).min be the

parent in F;_; with the minimum DFS code. Then, the minimum DFS code of s is the
concatenation of parent(s).min and the DFS code of the new added edge.

@ Springer

670 Z.Peng et al.

Algorithm 1: gSpan(D, F, s)

1 if s.code is not the minimum DFS code of s then
2 L return;

3 F < F|J{s}// F is the collection of frequent subgraphs ;
4 compute Enu(s);

s foreach s’ € E(s) do

6 | if|s’.D| > T then

7 L L gSpan(D, F, s);

At first, each different 1-subgraph is generated with its minimum DFS code. This gener-
ation can be implemented by just scanning the dataset once. By introducing the minimum
DEFS code for the same subgraph, where the minimum DFS code can be obtained based on
Lemma 1, gSpan is able to avoid redundant enumeration and restrict the extension of s in a
proper way.

Property 2 (Redundant Enumeration Elimination) [24] Given a frequent subgraph s, chil-
dren of s will be enumerated by extending one edge from every possible vertex in V; if and
only if it takes the minimum DFS code.

Property 2 eliminates redundant enumeration for the same subgraph in order to avoid many
unnecessary computations. Consider the graph g> shown in Fig. 1b as an example. Subgraph
(0, 3, 5) of g» can be extended from either (0, 3) or (3, 5). Since subgraph (0, 3, 5) that has
been extended from (3, 5) does not take the minimum DFS code, no enumeration is required
in this case. On the other hand, the same subgraph extended from (0, 3) takes the minimum
DFS code, and hence, enumeration of all its children will be performed by extending one
edge. In this manner, we can ensure that enumeration for the same subgraph is executed only
once.

Property 3 (Enumeration Restriction) [24] Given a frequent subgraph s associated with the
minimum DFS code, suppose L and R are the last and first discovery vertices in the depth-
first search. Let Pg_, 1 be the path from R to L. We enumerate children of s by appending
one edge in one of the following two cases: (1) backward extension: from L to a vertex in
Pr_.1; (2) forward extension: from a vertex in Pgr_, | to a new vertex.

Property 3 restricts the enumeration of a frequent subgraph by extending one edge from
its partial vertices instead of the complete vertices. For example, enumerating children of g;
shown in Fig. 1 constrains the extension of edges from vertices 0, 3, 5. We use Enu(s) to
denote the children of s by extending one edge using Property 3. After generating all distinct
1-subgraphs, the details of extracting all frequent subgraphs and their posting lists based on
each 1-subgraph are shown in Algorithm 1.

4 Overview of the solution

We propose a solution, called MRFSE (MapReduce-based frequent subgraph extraction), to
iteratively mine frequent subgraphs using a MapReduce-based platform such as Hadoop in
the level growth fashion. In our design, the whole dataset D is first divided into m disjoint
subsets and each subset D; is sent to a single machine M;. In particular, M; is responsible

@ Springer

Mining frequent subgraphs from tremendous amount of... 671

T T T
I I I
I I I
(- ! | | [size-i frequent
iteration | | | subgraphs
| | |
i] ‘ |
| [A H o VeS| : i
| (= VL2 i H 3 Key Value | iy
: f bl i
R '
[f§SrachiiD [! | DFs Code | Graph ID H !
Mapper (—
] [(s11,€13,812,--2) (S12,€21,€22,°%)) oo [—— il ;D, ¢ o code o ! Reducer !
H - Bl 8§ poccooooocoo
e I S e b I : e :
Je11,812,--.) (S22,€21,€20,77)) e T cod o
iteration | 1 E 5“2 code &1 j 4| sucode E
| | i I 21.code 8 d Q: s'i2.code |4
| 1 . 1 H
: Key Value i E g Key Value | v | ot
H
: . ' H ' .
| | Graph ID <Subgraph,Embeddings> I i !| DFs Code | Graph ID ' I
! | : i | Reducer !
: 8 (s31.€11,€12,-.) (532,€21,€22,°°")) ... : —| :' &51.code o 3 10 size-(i+1)
: 8 (541,€11,€12,---) (542,€21,€25,"*")) .. i E E s'3.code e | : ¢ i frequent
; //' ------------ ¢ | Sacode g | tosocesee==f | \subgraphs
+ fl toocooooeeoeeee n
8 ey I
| | U 1
Key Value | 0 ___ M......
I I I
| | Graph ID <Subgraph,Embeddings> | E |
'
J 8 (s’1,011,1,...) (5°12,€21,€25,°7)) ... Mapper J size-(i+2)
e [eaenen) Caenen. | 7| frequent
0 subgraphs
" P :
iteration H
| Key Value ! 3 ssssss |
I (I I
i | Graph 1D <Subgraph,Embeddings> . :
H
! 81 (s'11,€11,012,--.) (8"12,€21,€22,7) oo | | i !
! g (s721,810,012,+2) (8722,€21,€20,°")) ooe : !
! [: |
i I ! i

Fig. 4 Overview of the solution to mine frequent subgraphs

for mining frequent subgraphs from graphs in D; unchangeably during iterations. At the ith
iteration, we coordinate machines to mine all frequent i-subgraphs using a single MapReduce
Job. Figure4 shows the overview of our solution for mining frequent subgraphs in details.
Specifically, each mapper in M; generates frequent i-subgraph candidates from D; which are
then shuffled to reducers. Reducers verify and output all frequent i -subgraphs by aggregating
and counting all isomorphic i-subgraphs.

For ease of illustration, we denote as Fig all frequent i-subgraphs that g contains, and for
each subgraph s € Fig, we denote as & all the embeddings in g where Ve € £, g is graph
isomorphic to s. To continuously generate frequent subgraph candidates during iterations,
we maintain (J,.p Ff and | eep Use F$ £8,* which are generated at the end of iteration
i, and then taken as the input of iteration i + 1. As discussed before, in our design, each
machine M; is responsible for mining frequent subgraphs from graphs in a subset D;. In
this way, by configuring one or multiple mappers in each machine, each mapper in M; is
responsible for mining frequent subgraphs from a certain number of graphs in D;. Without
loss of generality, we assume each machine is configured to have a single mapper. Next, we
elaborate how MRFSE mines frequent subgraphs at each iteration.

Initially, the whole dataset D is first divided into m disjoint subsets and each subset D;
is sent to a single machine M;. Note D; is maintained in the local disk of M;. The first job
mines frequent 1-subgraphs. The map function in M; takes every g € D; as the input and
generates two outputs. The first output is Ff (asuperset of F’ f)and |, eF? &S . Note that every

subgraph in Ff is stored using its minimum DFS code. The first output is written to the local

4 For every g € D, we maintain all frequent i-subgraphs associated with the corresponding embeddings.

@ Springer

672 Z.Peng et al.

disk and taken as the input of the mapper in the next MapReduce Job. The second output
consists of a key value pair, highlighted in the rectangle with a red dashed line of Fig.4. The
key is the minimum DFS code of each subgraph, and the value is the graph identifier. The
mapper shuffles the minimum DFS code of each subgraph associated with a graph identifer.
Given two subgraphs s, 52, if the minimum DFS codes of sy, sp are equal, then s1,s7 are
graph isomorphic [24]. For this reason, reducers verify and output all frequent 1-subgraphs
to HDFS by aggregating and counting all isomorphic size-1 subgraphs that share the same
minimum DFS codes.

The second job mines frequent 2-subgraphs. The map function in M; takes Fj, F ?’ ,
Use]l«“f & asthe input, and generates two outputs as well. Fj contains all frequent 1-subgraphs

and is used to filter out non-frequent subgraphs in IF‘f and their corresponding embeddings by
examining their minimum DFS codes. The first output is]F§ (a superset of Ff)and |, eF} Es.

Existing Apriori-based and pattern-growth approaches can be extended to generate F2g and
U, eF ¥ based on Ff and |, Fé &S . In the next section, we will describe the details of the

above generation. Similarly, every subgraph in IF§ is stored using its minimum DFS code. The
first output is written to the local disk and taken as the input of the mapper in next MapReduce
Job. The second output consists of a key value pair, which is the minimum DFS code of each
2-subgraph in IF§ and the graph identifier, respectively. The iteration goes on similarly to
iteration 2 until no new frequent subgraphs are generated. Compared with existing frequent
subgraph mining approaches using MapReduce, MRFSE has the following properties:

— Each graph g is taken as the process unit, and we generate new subgraphs by appending
one edge based on the frequent subgraphs that g contains. For this reason, existing
approaches in centralized systems can be easily extended in our solution.

— In our design, no embeddings are shuffled among machines as each machine is respon-
sible for mining frequent subgraphs from a separate set of graphs unchangeably during
iterations. For this reason, MRFSE is able to save a large amount of network bandwidth.

— In the map function, only Fig and |, F¥ £$ are maintained in main memory. Obviously,
MREFSE reduces the memory requirement significantly.

In our solution, to provide enough number of mappers in the subgraph enumeration job,
we split the dataset into partitions at the beginning, each of which will be held and processed
by a separate mapper at each iteration. In order to guarantee that each mapper processes equal
amount of computations at each iteration, we propose two partitioning strategies as follows.

— Random partitioning In this strategy, we randomly assign each graph to a machine.
— Equal size partitioning In this strategy, we assign each graph to the machine with the
minimum number of edges for the graphs inside this machine.

5 Subgraph enumeration

In this section, we present the map task of enumerating frequent (i 4 1)-subgraph candidates
associated with their embeddings in a separate graph g. For the ease of illustration, in what
follows, we assume that a subgraph is associated with a set of embeddings whenever there
is no ambiguity in our discussion.

The input of subgraph enumeration is F;, IFf and Use]Ff &£S. The output of subgraph

. . g g . . . g
enumeration is Iy, and (J; eF%,, &s . The main idea of our approach is that Vs € F;, we

enumerate children of s by appending one edge based on | J s &S . Formally, we can have:

@ Springer

Mining frequent subgraphs from tremendous amount of... 673

Algorithm 2: Subgraph Enumeration Task

1 map-setup /* load frequent i-fragments */
2 L Load F; from HDFES;

3 map (ky, vy) /* generate (i + 1)-subgraphs */
4 parse]Fi.g from vy;

5 foreach s € Ff do
6 if contain(F;, s.code) then
L add s to F. ig;

8
s | Fy
9 write]Ff 1 to the local disk;

8
10 foreach f € IF; 1 do

11 emit(f.code, ki)
ky = g.id;

<« enumeration (Fig);

Fé = | Enuts) 1)

VseF,.g

The pseudo-code for subgraph enumeration is presented in Algorithm 2. Before executing
the map function, we first set F; to the frequent i-subgraphs which have been identified
in the previous iteration (line 2). Note that we only load the minimum DFS code of each
frequent i-subgraph into main memory rather than the subgraphs themselves. It is feasible
because the number of frequent i-subgraphs remains fairly constant when the cardinality of
the dataset increases. In practice, when F; is too large to be held in main memory, we only
load the hash keys of the minimum DFS codes or just choose not to load F; at all. Although
it incurs unnecessary enumerations for some non-frequent i-subgraphs, the correctness is
still guaranteed because non-frequent i-subgraphs will be pruned in the frequent subgraph
extraction job. At each map function, we first parse Ff from the input value (line 4), and filter
non-frequent subgraphs that are not contained in F; (lines 5-7). We generate a superset,]Ff e
of I*"l.g_'_l based on Fig (line 8) and write Ff 1 to the local disk (line 9). To help count frequent
(i 4+ 1)-subgraphs, we shuffle the minimum DFS code of each subgraph and the identifier of
the graph containing this subgraph separately, which are then aggregated in reducers.

Existing techniques can be easily extended and integrated into our framework to extract
frequent subgraphs. In the following, we extend pattern-growth approaches (called extension-
based enumeration), and Apriori-based approaches (called join-based enumeration) to help
generate new subgraphs at each iteration.

5.1 Extension-based enumeration

Consider an example by taking s shown in Fig. 2 as s and g; shown in Fig. 1 as g. According
to Lemma 3, we first identify the vertices in path Pg_,, for s, which are vertex 0 labeled with
A and vertex 1 labeled with B. Since there exist only two vertices, we do not need to perform
the backward extension. We begin from the vertex 1 of s to conduct the forward extension
by appending a new edge. Since we have already identified all embeddings in g for s, we
sequentially check the vertex v in each embedding e where v in g} is mapped to vertex 1 of
s. Specifically, we first collect all frequent edges which start from v but not contained in g3,
and append the edge one by one. For example, for embedding [0 1] (emphasized in yellow of
embeddings of 511 in Fig. 5), starting from vertex 1, we can append edges (1, 5), (1, 4), (1, 2),

@ Springer

674 Z.Peng et al.

(A) |01 | [04) (a)| 1231 (&) |21 (8)| 124
1-subgraphs a b c a
511 [53] [41]
e S11 o S12 e S13 e S14
b
2-subgraphs 014
e [041]
[513]| - :
E} a v a :
Sz@ 522 [531] s i
H]
@ @ S24 ; ﬂ i
15| {o1ay| JL]I (@3S 5
10| [sn] 15321 [012)
[514] [512] __"._"5

Fig. 5 An example of extension-based enumeration

Algorithm 3: E-Enumeration(F’ ig)

1]Fl 1
2 E < collect distinct edges from Fig ;
3 foreach s € Flg do

<~ 0; genG <«

4 foreach extension do

5 foreach ¢ € 5s.E do

6 S <« ext(e, E, extension);

7 foreach s’ € S do

8 let ¢’ be an embedding of s".E;
9 if /contain(genG, gz,/) then

10 genG <« genG U {gZ:};

1 if /conlam(IF +I’S ’.code) then
12 L]F F; +1 U {s'};
13 else

14 S <« get(]FlH, sM);

15 5.E < 5.EUSs.E;

16 return F$

1+]’

based on which three new 2-subgraphs are generated and the corresponding embeddings are
highlighted in yellow in the figure. Similarly, we can perform the forward extension for
the other embeddings associated with the same subgraph. After extending one edge from
vertex 1, we perform with the forward extension from the vertex O of s. For embedding [0
1], we append one edge (0, 4) that starts from 0. A new 2-subgraph is generated and the
corresponding embedding is highlighted in black, and the complete extension for s in g is
shown at the bottom of Fig. 5.

@ Springer

Mining frequent subgraphs from tremendous amount of... 675

Lemma 1 (Isomorphism-free Verification) Given a subgraph s with an embedding e, and
another subgraph s" with an embedding ¢', if | Egs | = |Eg.\./ |, andV(i, j) € Egs, (i, j) € Eg.,,/,

then g} and gg,/ are the identical subgraphs. Therefore, s is graph isomorphic to s'.

To avoid unnecessary enumeration of the same subgraphs, we need to remove redundant
subgraphs with non-minimum DFS code. Take the subgraph s1, shown in Fig. 5 as an example.
By appending edge (3, 5) for embedding [2 3], we can generate a subgraph s with embedding
[2 3 5]. Although we can perform either a graph isomorphism testing of s on the generated
subgraphs, or a minimum DFS code verification of s, these two operations are expensive. In
practice, we can verify whether s is a redundant subgraph simply based on Lemma 1. For
example, by constructing the subgraph from embedding [2 3 5] of s, we find that it is identical
to the subgraph constructed from embedding [5 3 2] of subgraph 5,3 shown in Fig. 5. Hence,
s is subgraph isomorphic to 573, and we do not need to enumerate s.

According to Lemma 1, for each subgraph s, s generated by parent(s).min takes the
minimum DFS code. Hence, we rank the subgraphs in Ff in the ascending order of their
minimum DFS codes. When a subgraph is verified as a duplicate, we can safely discard
this subgraph and its embeddings since the associated DFS code is not minimum. After
ranking and enumerating al 1-subgraphs, we can detect the other redundant subgraphs and
their embeddings surrounded by dashed red lines.

The embedding-based enumeration algorithm is outlined in Algorithm 3. At first, we
initialize Ff 1- and a hash set genG which maintains all distinct g, for each new subgraph
s € IF‘l.g 1 associated with an embedding e € s.E (line 1). We then sort the subgraphs in Fig
in the ascending order of their minimum DFS codes and collect the distinct edges from their
minimum DFES codes (lines 2-3). For each subgraph s in Fl.g , we enumerate all children of
s by appending one edge from every possible vertex, which is described in Lemma3 (lines
4-16). For each possible vertex v, we sequentially check the embeddings of s and extending
one edge from the mapping vertex v’ of each embedding to v by probing the edges starting
from v in E (line 7). For each newly generated subgraph s’, according to Lemma 1, if g;,/
is contained in genG, we can verify that the associated DFS code of s’ is not the minimum.
We note that s” might have already been contained in F. i‘g , since the same s’ is generated by s
but with another embedding. In this case, we merge their embeddings together (lines 14—16).
Finally, we return IF‘f 1

5.2 Join-based enumeration

Asnotedin Sect. 1, Apriori-based approaches generate new subgraphs by joining two frequent
subgraphs. Directly employing Apriori-based approaches poses three problems:

— Redundant elimination is required for the newly generated subgraphs by performing
graph isomorphism testing.

— Subgraph isomorphism testing is required to verify whether the newly generated sub-
graphs are contained in g.

— Itis costly to identify join pairs of subgraphs.

To tackle these problems, we extend the Apriori-based approaches by joining two embed-
dings rather than the subgraphs. For join-based enumeration, we do not need to maintain all
embeddings for a subgraph s in g. According to Lemma 2, we join two embeddings once their
corresponding subgraphs in g satisfy a certain condition. However, if we maintain multiple
embeddings for the same subgraph, that will incur unnecessary computations for performing

@ Springer

676 Z.Peng et al.

the same join. Hence, in our design, for each subgraph sg contained in g, we maintain only
one embedding of sg for s if sg is graph isomorphic to s.

Lemma 2 Given an embedding e € s.E and another embedding ¢’ € s'.E, where s and s’

. . g o
are contained in F;, Mje‘ join e and e’ if and only if one of the followmg conditions is satisfied.:
(1)ifi =1, g; and g, share one vertex; (2) else, g, and g}, share one connected child, i.e.,
they share i — 1 edges.

For a subgraph with ring or star structures, the number of embeddings can be reduced
significantly as aresult. Consider two subgraphs s and s g in Fig. 6 for example. We can observe
that sg is graph isomorphic to s. Since each vertex labeled with B of s can be mapped to every
vertex labeled with B of sg, the total number of embeddings in sg for s is 24. However, in our
case, we only maintain one embedding. Compared with the extension-based enumeration,
join-based enumeration has the following properties:

1. Vs € Ff , it maintains less number of embeddings for s;
2. Itgenerates smaller size of IE‘lg 41~ Thatis, some non-frequent subgraphs in IFf 1 are pruned

only based on F{.

Hence, the 1/0 cost incurred in identifying frequent (i 4 1)-subgraphs can be reduced, by
maintaining less number of both embeddings and subgraphs. We illustrate how to generate
new subgraphs by join embedding pairs and take graph g; (shown in Fig. 1) as g for example.
The generated 1-subgraphs and their embeddings for g are shown in the top left corner of
Fig.7.

Fig. 6 Two subgraphs with star
structures 2

o
HORO=0,
Q
wé
IN
o
OFOF0

3

4
S8
b
‘1[04 | %3 %1 14
PN (1,0) 200 |(13) (L1 (12
51 ['[53]
1,1 3,0 2,0 13
| - : i . (1.1) o] [Ro] [wo] [w3)
ID:
1-Subgraphs and their Embeddings Vertices and their Inverted Lists

[woed] [wora | [waes)][e3eo] (1060] [w2E.0][@] [wo@wo] [w2@w][2060][3.@]

S

AN

subgraph
ID:

2

3

4

5

6

& 0 al g 2 o 0 31 & 0 31 s U al aZ 5% Z & 0 Cl
a b [0 a
014] o 11 f514] b
2 0 a1 2(») Zé 0 1 2(B)
fo15] fo141|I513) 532 "012|ls12 P Caretton 1231 214

Fig.7 A join example for 1-subgraphs

@ Springer

Mining frequent subgraphs from tremendous amount of... 677

Based on Lemma?2, we join two embeddings if they satisfy the first condition. Hence,
we sequentially scan each embedding, starting from the subgraph (s11) with the smallest
minimum DFS code to that (s14) with the largest minimum DFS code, and build the inverted
list for each vertex, as shown in the top right corner of Fig.7. Each item in the inverted list
consists of a pair (idy, id>), where id; and id, represent the subgraph identifier in Fig , and
the embedding identifier in the subgraph, respectively, and are highlighted in red and blue
colors, respectively. Then, we join every item pair that belong to the same inverted list. Since
an (i + 1)-subgraph could be generated by two different item pairs, to guarantee that each
(i + 1)-subgraph is generated by the i-subgraph in Fig with the minimum DFS code, we
join the item pairs according to an order. We first sort the subgraphs in Fig according to the
ascending order of their minimum DFS codes and then sequentially process each subgraph
s in Fig that is involved in the join pairs.

Lemma 3 Given an embedding e € s.E and another embedding ¢' € s'.E, suppose
s.code < s'.code and s,s' € FF, let (g1, ¢2) be the edge contained in g5 but not in

. . / 3 7,
e, and @1 be the vertex contained in both g, and g;. If e and ¢’ satisfy the join condition,

then we generate a new subgraph sg based on g, by adding edge (91, ¢2) in gi: to g5 from
its vertex ¢j.

For the example shown in Fig. 7, by sorting the subgraphs in F& whichare sy, 512,513, S14,
we will first process join pairs that s11 involves in, which are (1,0)(1,1), (1,0)(1,2), (1,0)(3,0),
(1,0)(4,0), (1,2)(3,0), (1,2)(4,0), (1,3)(2,0), (1,1)(4,0), (1,2)(1,3). The item pairs are joined
according to Lemma3. For example, to join item pair (1, 0)(1, 1), which corresponds to
embeddings [0 1] and [0, 4], we can identify that ¢; and ¢, are vertices 0 and 4. By appending
the edge (0, 4) to g?f},eo, we can generate a 2-subgraph sg which is graph isomorphic to s;.
However, in our case, the generated DFS code from sg may not be the minimum for s77,
because we only maintain a single embedding while omitting the other possible embeddings
of sg for s22. We use the mechanism proposed in [24] to identify the minimum DFS code
of 57> based on sg. One observation is that the subgraphs joined by items pairs (1,0)(1,1)
and (1,2)(1,3) are graph isomorphic to 527, and hence, by first identifying the minimum DFS
code of s based on (1,0)(1,1), subsequent identification of s3> can be omitted.

Similarly, based on Lemma 1, we can discard s if there exists an identical subgraph to
a new generated (i + 1)-subgraph gJ. Another important observation is that although an
(i + 1)-subgraph g? is generated by joining two frequent i-subgraphs, we may verify that s
is not a frequent subgraph without scanning the dataset. To illustrate this point, we consider
the four frequent 3-subgraphs that are shown in Fig. 8. We first build the inverted lists and
then generate the new subgraphs by joining item pairs. Note that given an (i + 1)-subgraph
s, the necessary condition of qualifying s to be frequent is that all its connected children are
frequent. Therefore, s41 and s43 are not frequent since one of their subgraphs is not frequent,
and this can be simply verified based on Lemma4.

Lemma 4 Given a subgraph s, let T(s) be the number of its connected children and ¢ (s)
be the item pairs from which s can be joined. The necessary condition of qualifying s to be
frequent is that ¢ (s) = t(s) * (t(s) — 1)/2.

We present the join-based enumeration algorithm in Algorithm 4. The initialization is
the same as that of Algorithm 3 (line 1). By scanning the embeddings in Fig, we build the
inverted lists IL (line 2). We then sequentially scan each subgraph s in F i‘g and collect the join
pairs J that s is involved in (line 4). For each join pair p € J, we generate the subgraph sg
based on p (line 6). If sg is verified as a new subgraph, then we compute its minimum DFS

@ Springer

678 Z.Peng et al.
Algorithm 4: J -Enumeration(Fig)
1 IF;"H <~ @, genG < 0;
2 sort subgraphs of Fl.g in the order of minimum DFS codes;
3 build the inverted lists L by scanning embeddings in Fig;
4 foreach s € Flg do
5 find the join pairs J which s is involved in;
6 foreach p € J do
7 generate subgraph sg contained in g based on p;
8 if /contain(genG, sg) then
9 identify s” with the minimum DFS code for sg;
10 if ./contain(]FigJrl ,s'.code) then
1 L IFf.’H e]Ff?HU{s’};
12 else
13 5« get(]F?Jrl ,s'.code);
14 5.E < 5.EUS .E;
15 | genG < genG U {sg};
16 foreach s € Ff 1 do
17 if ¢(s) <> 7(s) * (v(s) — 1)/2 then
18 L remove s from Fi?:rl R
g .
19 return Fi+l ;
subgraph 1 P 3 a

0123] | 55y Go135]| s

‘14312] | g5y

Lo | [onws)]| [@w2w3) | [@364]| [@1203)]
@0 | (1,0) (1,0) I (2,0)
(2,0) (3,0) (4,0)
(4,0
[(1,0)2,0) | | (1,0)3,0) | [(1,0)4,0) | [(20040 | [(3,040 |

[01235]

Sa2

Fig. 8 Pruning non-frequent (i + 1)-subgraphs

@ Springer

Mining frequent subgraphs from tremendous amount of... 679

g g
i+1 i+1
based on Lemma4 (lines 15-17), we return Ff 1 In Lemma 5, we show that our join-based

enumeration approach is correct and complete.

code and update 7 | (lines 8-14). By pruning non-frequent generated subgraphs in F'

Lemma 5 (Correctness and Completeness of Join-based Enumeration) The join-based enu-
meration is correct and complete.

Proof The correctness of join-based enumeration is guaranteed by Lemma 2. Next, we prove
the completeness of the join-based enumeration. Given a frequent subgraph s, based on its
definition, all parents of s is frequent. Let s’ be the parent with the minimum DFS code,
and e be the edge which is added to s’ to constitute s. By replacing ¢ with any edge in
s’ (if any), we can constitute a new subgraph 5. Obviously, s can be joined by s’ and 5.
As we maintain all frequent subgraphs associated with their embeddings, the join-based
enumeration is complete. O

Discussion [5] proposes a data structure called VAT to organize the subgraphs and their
embeddings. VAT is similar to the data structure used in MRFSE-J. The main difference
is that, at first step, VAT generates new frequent subgraph candidates by joining every two
possible frequent subgraphs and performs a graph isomorphism test to remove duplicates;
at second step, for each new generated candidate, VAT drills down to specific graphs and
join two subgraphs by comparing their embeddings. In MRFSE-J, we first build the inverted
index, based on which two subgraphs that occur in the same posting list are joined together.
Consider that for every join pair P in MRFSE-J, VAT is also necessary to generate P.
Obviously, MRFSE-J eliminates the cost of the first step of VAT.

6 Experiment

In this section, we evaluate the performance of the proposed algorithms on a 72-node cluster.
Each node in the cluster has one Intel Xeon X3430 2.4 GHz Quad core Processor, 8 GB of
RAM, two 500 GB SATA hard disks and gigabit ethernet. Each node is equipped with the
CentOS 5.5 operating system, Java 1.6.0 with a 64-bit server VM, and Hadoop 0.20.2. We
configure one node to act as the name node and job tracker and the remaining nodes as the
data nodes and task nodes. All the nodes are connected via three high-speed switches. We
make the following changes to the default Hadoop configuration: (1) the replication factor
is set to 1; (2) each node is configured to run one map; (3) the number of mappers is set to
the number of used machines instead of the number data splits. A typical example of setting
a configurable number of mappers can be found in Giraph,” a distributed graph processing
systems built on Hadoop.
We evaluate the following approaches in our experiments.

— MRESE is our proposed approach. MRFSE employs one MapReduce job to mine F;
that is generated without performing graph isomorphism test, and no embeddings are
shuffled. By default, MRFSE uses the extension-based enumeration to generate frequent
subgraph candidates.

— P-MREFSE [19] is our previous work. P-MRFSE employs two MapReduce jobs to mine
F; that is generated without performing graph isomorphism test. Embeddings need to be
shuffled once to generate candidates.

5 https://github.com/apache/giraph.

@ Springer

https://github.com/apache/giraph

680 Z.Peng et al.

60000 f Vertex Distribution —+— 60000 f Edge Distribution —+—
50000 f 50000 f
2 40000 | 2 40000
3 3
6 30000 t (3 30000
S 20000 | ‘S 20000
+* H*
10000 10000 H
0 & ‘ : 0& : ‘
23.98 100 200 300 419 25.76 100 200 300 456
of Vertices # of Edges
(a) Number of Vertices (b) Number of Edges
500000 1e+006
P Edge Label Digtribution —+—
400000 Vertex Label Distribution —+— 800000 -
[2] (2]
-S_ <
® 300000 @ 600000
O] O]
%5 200000 5 400000 r
H* I+
100000 200000 r
o : 0 :
1 2 3 4 5 6 7 8 1 2 3
of Distinct Vertex Labels # of Distinct Edge Labels
(¢) Distinct Vertex Labels (d) Distinct Edge Labels

Fig. 9 Distribution of graphs in the real dataset. a Number of vertices, b number of edges, ¢ distinct vertex
labels and d distinct edge labels

— MIRAGE [3] issues one MapReduce job to mine F;. In MIRAGE, duplicated candidates
need to be detected by performing graph isomorphism test and embeddings needs to be
shuffled for the generation of candidates in the next iteration.

We conduct the experiments over one real dataset and several synthetic datasets:

— PubChem®: PubChem is a free database which provides various interfaces for users to
access and download chemical structures, substances, and biological assays. We extract
one million chemical structures from PubChem as the real dataset. The distribution of
graphs in PubChem is shown in Fig. 9. The graphs have 23.98 vertices, 25.76 edges, 3.5
distinct vertex labels, 2.0 distinct edge labels on average, and the total number of distinct
vertex labels and distinct edge labels is 81 and 3, respectively. The size of PubChem
dataset is 434 MB.

— Synthetic Datasets: We use the graph generator generously provided by [7] to generate
a collection of graphs with different settings, such as the number of graphs, the average
size of each graph (| E¢|), the number of distinct labels of vertices and edges. The size of
graphs follows a normal distribution with 5 as the variance.

We evaluate the performance of the proposed approaches in terms of the running time,
communication cost and I/O cost. We use PubChem as the default dataset, and adjust the

6 http://pubchem.ncbi.nlm.nih.gov.

@ Springer

http://pubchem.ncbi.nlm.nih.gov

Mining frequent subgraphs from tremendous amount of... 681

Table 2 Parameters for the real dataset

Parameter Range
Maximum size of frequent subgraphs 2,4,6,8,10,12, 14, 16
Frequency threshold (%) 4,6,8,10, 12
of compute nodes 20, 30, 40, 50
Fig. 10 Effect of data 2000 Random Paritioni
P : andom Paritioning —+—
partitioning strategies — Equal Size Paritioning —x—
£ 1500 |
[0)
£
> 1000 |
c
c
5 500}
14
0

2 4 6 8 10 12 14 16
Maximum size of edges to be mined

maximum size of the frequent subgraphs, the frequency support (7') and the number of
machines as summarized in Table2. The default settings of parameters are highlighted in
bold.

6.1 Effect of data partitioning strategies

We first study the effect of MRFSE using random partitioning and equal size partitioning
to split the dataset and report the result in Fig. 10. From the figure, we can observe that
performance of using equal size partitioning strategy is better than that of using random
partitioning. This is because we enumerate new subgraphs by appending frequent 1-subgraphs
to the latest generated frequent subgraphs. Random partitioning makes each machine process
similar number of graphs, but the size of graphs could be skewed among machines. While
equal size partitioning makes each machine process similar number of edges, the workload
could be more balanced among machines in this way, and hence speeding up the mining
process. In the remaining experiments, we employ equal size partitioning strategy to partition
the data.

6.2 Effect of subgraph enumeration methods

We then evaluate the effect of using different subgraph enumeration methods, i.e., an
extension-based approach and a join-based approach, to generate frequent subgraph can-
didates. The results are plotted in Fig. 11.

The first observation is that the join-based approach incurs less I/O cost. The reason
is twofold. First, compared with the extension-based approach, the join-based approach
maintains less number of embeddings. Second, the join-based approach is able to filter out
a larger number of subgraphs, i.e., less number of frequent subgraph candidates and their
corresponding embeddings are written to the local disk, and hence resulting in a less number
of I/Os.

@ Springer

682 Z.Peng et al.

Fig. 11 Comparison of subgraph 2000 - ;
enumeration methods. a Running Extension-based enumeration
. — Join-basesd enumerat
time and b I/O cost 2
o 1500 f
S
|_
o 1000 t
C
£
S 500
x
O " " " " " " "
2 4 6 8 10 12 14 16
Maximum size of edges to be mined
(a) Running Time
40000 Extension-based enumeration —>—
35000 Join-basesd enumeration —*—
__ 30000
€ 25000
& 20000
Q 15000
10000
5000
0

2 4 6 8 10 12 14 16
Maximum size of edges to be mined
(b) 1/0O Cost

The second observation is that although the join-based approach maintains less num-
ber of embeddings, the extension-based approach achieves better performance. The reason
is twofold as well. First, as described in Sect.5, extension-based approach generates new
subgraphs using gSpan, i.e., by scanning embeddings associated with each subgraph and
appending frequent 1-subgraphs to every possible position of each embedding. Join-based
approach generates frequent subgraphs by scanning embeddings associated with each sub-
graph, producing and joining the embedding pairs. Although the join-based approach
generates less number of embeddings and subgraphs, the computation is more costly due
to identification of the minimum DFS codes for the newly generated subgraphs. Second,
Fig.9 suggests that the data graphs are sparse, and hence, they may not contain complex
subgraphs such as rings or stars. As such, the I/O cost reduction in the join-based approach
does not make up for the more expensive computation, and therefore, it is less efficient than
the extension-based approach as a result.

To derive a minimum running time, we adopt the extension-based approach to enumerating
new subgraphs in MRFSE in the remainder of the experiments.

6.3 Effect of frequency support

We study the performance of MRFSE by varying the frequency threshold from 4 to 12% of
| D, the cardinality of the data set. Figure 12 plots the experimental results in terms of the
number of frequent subgraphs, running time and I/O cost of MRFSE. From 12a, we observe
that at the beginning, the number of frequent subgraphs increases exponentially and then
increases smoothly after an inflection point emerges. This is because frequent subgraphs

@ Springer

Mining frequent subgraphs from tremendous amount of... 683

Fig. 12 Effect of frequenc 7000
suﬁport a#of freque?lt ’ 2 T=4%"ID|
: R S 6000 | T=6%%*D| —x—
subgraphs, b running time and ¢ © T=8%*|D| —x
1/0 cost 2 5000 | T=10%*D|] —=—
=12%*
@ 4000 | 1-12%7IDL e
$ 3000
o
o 2000 L
L 1000 j
s} ="
v 0 2
2 4 6 8 10 12 14 16
Maximum size of edges to be mined
(a) # of Frequent Subgraphs
3000 T=4%*|D] —+—
— T=6%*|D| —<—
@ 2500 T=8%*|D] —*—
[0) T=10%*|D|] —&—
£ 2000 T=12%*|D] —o—
|_
o 1500 d
£ oo
c 1000 -
c
]
¥ 500
O L L L L L L
2 4 6 8 10 12 14 16
Maximum size of edges to be mined
(b) Running Time
1 : ; . :
00000 T=4%*|D| —+—
T=6%*|D| —*—
—~ 80000 T=8%"|D| —*—
Q T=10%*|D| —&—
2 60000 | T=12%*D| —=
®
o
O 40000
e} h
— 20000
0

2 4 6 8 10 12 14 16
Maximum size of edges to be mined
(c) I/O Cost

with smaller size tend to have many extensions that are then able to be verified as frequent
subgraphs as well. Nevertheless, frequent subgraphs with larger size may not have many
valid extensions with respect to the frequency threshold. The position of the inflection point
relies on the frequency threshold. Generally, a small frequency threshold leads to a larger
inflection point. Another interesting finding is that the number of frequent subgraphs drops
super-linearly when we enlarge the frequency threshold. Both the running time and I/0 cost of
MREFSE follow the same trends to the number of frequent subgraphs by varying the frequency
threshold. As we can see, mining frequent subgraphs from one million chemical instances
with original data size 434 MB needs to consume about 35 GB disk spaces. Like [9], this
finding verifies as well that frequent subgraph mining is a memory-intensive task, and it is
rather necessary to propose a distributed file system-based approach, like MFRSE, to solve
this problem.

@ Springer

684 Z.Peng et al.

6.4 Comparison with existing approaches

We next compare MRFSE with existing approaches over PubChem real dataset and plot
the results in Fig.13. As we can see from Fig. 13a, MRFSE runs faster than P-MRFSE
and MIRAGE. The reason is twofold. First, compared with both P-MRFSE and MIRAGE,
MRFSE maintains embeddings locally, and hence avoiding expensive communication cost;
second, compared with P-MRFSE, MREFSE merges two MapReduce jobs in P-MRFSE into
one MapReduce job, eliminating the overhead of issuing an extra MapReduce job; Besides,
MRFSE mines frequent subgraphs without performing any isomorphism test operation which
is imperative and expensive in MIRAGE. As pointed out in Sect. 2, P-MRFSE and MIRAGE
follow similar generate-and-verification paradigm to mine frequent subgraphs. Like MRFSE,
P-MRFSE mines frequent subgraphs without performing any isomorphism test operation.
From this perspective, P-MRFSE performs better than MIRAGE. While MIRAGE merges
two MapReduce jobs in P-MRFSE into one MapReduce job, in this way, MIRAGE per-
forms better than P-MRFSE. Considering the above two factors together, we find that the
performance of P-MRFSE and MIRAGE is fairly similar.

Compared with P-MRFSE and MIRAGE, the communication cost in MRFSE is reduced
by up to three orders of magnitude. This is not surprising because both P-MRFSE and
MIRAGE need to shuffle tremendous amount of embeddings from mappers to reducers for
generating candidates in the current iteration or ready for generating candidates in the next
iteration, while MRFSE simply maintains embeddings locally.

Fig. 13 Comparison over 3500 MRFSE &
PubChem dataset. a Running — 3000 P-MRFSE i
time and b I/O cost o MIRAGE
g 2500 B 1
i 20000 f | \
2 1500 § -
S 1000 Eifi § K

4% 8% 10% 12%
Frequency Threshold (*|D|)

(a) Running Time

MRFSE &zz=zzz3 P-MRFSE MIRAGE

gmoooo : :
:g) 10000 | § b
c 1000} §
T 100} §
o 6% 8% 10% 12%

Frequency Threshold (*|D|)
(b) 1/0O Cost

@ Springer

Mining frequent subgraphs from tremendous amount of... 685

Table 3 Parameters for synthetic

datasets Parameter Range
Data size (x 1000k) 0.5,1,1.5,2
of vertex labels 20
of edge labels 1
Averaged graph size (# of edges) 10, 15, 20, 25
Fig. 14 Scalability. a Running 2500 ‘ :
time, b communication cost . P-nggE
£ 2000 | MIRAGE
[}
1S L
= 1500
o
£ 1000 f
£ .
=] \
0 &

500 1000 1500 2000
Cardinality (*1000)

(a) Running Time
MRFSE k=3 P-MRFSE zZZzZzz2 MIRAGE

o

= 100000 N
3 10000

o

c 1000

O

_‘g 100

S 10

IS

£ 1 =

8 500 1000 1500 2000

Cardinality (*1000)

(b) Communication Cost

6.5 Scalability

We evaluate the scalability of MRFSE together with other existing approaches over the
synthetic dataset. The generation parameters of the synthetic datasets are summarized in
Table 3. In each experiment, we adjust a single parameter while keeping the rest using their
default values (in bold). The frequent threshold for all experiments is set to 6%.

We plot the results in Fig. 14 by varying the number of graphs. First, MRFSE runs
faster than P-MRFSE and MIRAGE by a factor of 11-22%. Second, when the number of
graphs varies, the running time of all three approaches increases linearly. The reason is that
although the cardinality of the dataset increases, the number of frequent subgraphs almost
remains constant. For this reason, the number of frequent subgraphs that are contained in
each graph almost remains the same. The running time (communication cost) of the above
three approaches depends on that over every individual graph, together with the cardinality
of the dataset. Therefore, both the communication cost and running time of them increase

@ Springer

686 Z.Peng et al.

Fig. 15 Effect of averaged graph 6000

: ot MRFSE &
size. a Running time, b g
communication cost % 5000 -P-MRFSE 7
@ MIRAGE
)
£ 4000
'_
<, 3000
£
c 2000t
5 N
& 1000} } 5%
0 &1 12| &
10 15 20 25

Averaged Graph Size
(a) Running Time

MRFSE &z P-MRFSE MIRAGE

100000
10000
1000
100

10

1

"""
T

15
Averaged Graph Size

Communication Cost (MB)

(b) Communication Cost

linearly with the number of graphs. Third, MRFSE reduces the communication cost by up
to three orders of magnitude. The reason is that MRFSE maintains the embeddings locally
and only shuffles the minimum DFS codes of frequent subgraph candidates from mappers to
reducers.

6.6 Effect of averaged graph size

We finally investigate the performance by varying the averaged graph size and plot the results
in Fig. 15. MRFSE runs faster than P-MRFSE and MIRAGE by a factor up to 20%, and there
is an obviously increasing benefit when the averaged size of graph increases. Besides, when
the averaged graph size varies, the running time and the communication cost of above three
approaches increase exponentially. The reason is that the number of frequent subgraphs
increases exponentially when the averaged graph size varies, which results in an exponential
increase of the number of frequent subgraphs that a graph contains.

7 Conclusion

In this paper, we study the problem of efficiently mining frequent subgraphs from a tremen-
dous amount of small graphs in a distributed environment, particularly, using the MapReduce
framework. We propose an efficient and scalable solution, called MRFSE, to iteratively mine
frequent subgraphs. At each iteration, in the map phase, MRFSE issues parallel scan over

@ Springer

Mining frequent subgraphs from tremendous amount of... 687

graphs in the dataset, extracts frequent subgraph candidates from every graph separately, and
shuffles the minimum DFS codes of these candidates to reducers. Existing approaches in
centralized systems are easily extended to generate new subgraphs. In the reduce phase,
reducers verify and output frequent subgraphs by aggregating the same minimum DFS
codes. MRFSE poses three beneficial properties. First, new frequent subgraphs are gen-
erated without performing graph isomorphism test which is imperative and expensive in
existing approaches; second, MRFSE is able to save a large amount of network bandwidth
by maintaining tremendous amount of embeddings locally. Third, as processing each graph
separately, compared with existing approaches, MRFSE consumes less memory cost. Exten-
sive experiments conducted on our in-house clusters demonstrate that the techniques built
using proposed framework are scalable and efficient.

Acknowledgements We would like to thank the anonymous reviewers for their helpful and insightful com-
ments. This work was in part supported by the National Natural Science Foundation of China (61502504,
61502347, 61432006), the Nature Science Foundation of Hubei Province of China (2016CFB384), the Min-
istry of Science and Technology of China, National Key Research and Development Program (Project Number:
2016YFB1000700) and the Fundamental Research Funds for the Central Universities, the Research Funds of
Renmin University of China No. 15XNLF09.

References

1. Aridhi S, d’Orazio L, Maddouri M, Nguifo EM (2015) Density-based data partitioning strategy to approx-
imate large-scale subgraph mining. Inf Syst 48:213-223
2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000)
The protein data bank. Nucleic Acids Res 28:235-242
3. Bhuiyan M, Hasan MA (2015) An iterative mapreduce based frequent subgraph mining algorithm. IEEE
Trans Knowl Data Eng 27(3):608-620
4. Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules.
In: ICDM, pp 51-58
5. Chaoji V, Hasan MA, Salem S, Zaki MJ (2008) An integrated, generic approach to pattern mining: data
mining template library. Data Min Knowl Discov 17(3):457-495
6. ChengJ, Ke Y, Ng W (2009) Efficient query processing on graph databases. ACM Trans Database Syst
34(1):2
7. Chengl,KeY,NgW,LuA(2007) Fg-index: towards verification-free query processing on graph databases.
In: SIGMOD conference, pp 857-872
8. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: OSDI, pp
137-150
9. HanJ (2005) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., San Francisco
10. Hill S, Srichandan B, Sunderraman R (2012) An iterative mapreduce approach to frequent subgraph
mining in biological datasets. In: BCB, pp 661-666
11. Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism.
In: ICDM, pp 549-552
12. Huan J, Wang W, Prins J, Yang J (2004) Spin: mining maximal frequent subgraphs from graph databases.
In: KDD, pp 581-586
13. Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures
from graph data. In: PKDD, pp 13-23
14. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res
28(1):27-30
15. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: ICDM, pp 313-320
16. Lin W, Xiao X, Ghinita G (2014) Large-scale frequent subgraph mining in mapreduce. In: IEEE 30th
international conference on data engineering, Chicago, ICDE 2014, IL, USA, 31 March—4 April, pp
844-855
17. Liu Y, Jiang X, Chen H, Ma J, Zhang X (2009) Mapreduce-based pattern finding algorithm applied in
motif detection for prescription compatibility network. In: Advanced parallel processing technologies, 8th
international symposium, APPT 2009, Rapperswil, Switzerland, Proceedings, 24-25 Aug, pp 341-355

@ Springer

688 Z.Peng et al.

18. Lowe DG (2001) Local feature view clustering for 3D object recognition. In: CVPR, pp 682-688

19. Lu W, Chen G, Tung AKH, Zhao F (2013) Efficiently extracting frequent subgraphs using mapreduce.
In: Proceedings of the 2013 IEEE international conference on big data, Santa Clara, CA, USA, 6-9 Oct
2013, pp 639-647

20. National library of medicine. http://chem.sis.nlm.nih.gov/chemidplus

21. Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: KDD, pp
647-652

22. Petrakis EGM, Faloutsos C (1997) Similarity searching in medical image databases. IEEE Trans Knowl
Data Eng 9(3):435-447

23. Wang C, Wang W, Pei J, Zhu Y, Shi B (2004) Scalable mining of large disk-based graph databases. In:
KDD, pp 316-325

24. Yan X, Han J (2002) gspan: graph-based substructure pattern mining. In: ICDM, pp 721-724

25. Yan X, Yu PS, Han J (2004) Graph indexing: a frequent structure-based approach. In: SIGMOD confer-
ence, pp 335-346

Zhe Peng is currently working for the Ph.D. degree in School of Infor-
mation and DEKE, MOE, Renmin University of China, Beijing, China.
She is a student member of China Computer Federation. Her research
interests include data management and analytics.

Tongtong Wang received the MS degree in Shandong Jianzhu Univer-
sity, China, in 2015. He is currently working toward the Ph.D. degree in
School of Information and DEKE, MOE, Renmin University of China.
He is a student member of China Computer Federation. His research
interests include data management and analytics.

@ Springer

http://chem.sis.nlm.nih.gov/chemidplus

Mining frequent subgraphs from tremendous amount of... 689

Wei Lu is currently an associate professor at Renmin University of
China. He received his Ph.D. degree in Computer Science from Renmin
University of China in 2011. His research interest includes query pro-
cessing in the context of spatiotemporal, cloud database systems, and
applications.

Hao Huang received a Ph.D. degree in Computer Science from Zhe-
jiang University, China, in 2012. He is currently an Associate Professor
at State Key Laboratory of Software Engineering, Wuhan University,
China. His research interests include data management and analytics,
data mining, and intelligent information systems. He is a member of
the ACM and the CCF.

Xiaoyong Du is a professor at Renmin University of China. He
received his Ph.D. degree from Nagoya Institute of Technology in
1997. His research focuses on intelligent information retrieval, high
performance database and unstructured data management.

@ Springer

690

Z.Peng et al.

@ Springer

Feng Zhao is a Data Scientist at Expedia, London. He received his
Ph.D. degree in School of Computing from National University of Sin-
gapore in 2014. His research interest includes deep learning, graph
mining and recommendation system.

Anthony K. H. Tung received the BSc (Second Class Honor) and MSc
degrees in computer science from the National University of Singapore
(NUS) in 1997 and 1998, respectively, and the Ph.D. degree in com-
puter sciences from Simon Fraser University (SFU) in 2001. He is cur-
rently an Associate Professor in the Department of Computer Science,
National University of Singapore. His research interests involve various
aspects of databases and data mining (KDD) including buffer manage-
ment, frequent pattern discovery, spatial clustering, outlier detection,
and classification analysis.

	Mining frequent subgraphs from tremendous amount of small graphs using MapReduce
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Frequent subgraph mining
	3.2 Minimum DFS code and gSpan

	4 Overview of the solution
	5 Subgraph enumeration
	5.1 Extension-based enumeration
	5.2 Join-based enumeration

	6 Experiment
	6.1 Effect of data partitioning strategies
	6.2 Effect of subgraph enumeration methods
	6.3 Effect of frequency support
	6.4 Comparison with existing approaches
	6.5 Scalability
	6.6 Effect of averaged graph size

	7 Conclusion
	Acknowledgements
	References

