
The VLDB Journal (2017) 26:829–854
DOI 10.1007/s00778-017-0481-6

REGULAR PAPER

MSQL: efficient similarity search in metric spaces using SQL

Wei Lu1 · Jiajia Hou1 · Ying Yan3 · Meihui Zhang2 · Xiaoyong Du1 ·
Thomas Moscibroda4

Received: 27 November 2016 / Revised: 25 August 2017 / Accepted: 7 September 2017 / Published online: 6 October 2017
© Springer-Verlag GmbH Germany 2017

Abstract Similarity search is a primitive operation that
arises in a large variety of database applications. Typi-
cal examples include identifying articles with similar titles,
finding similar images and music in a large digital object
repository, etc. While there exist a wide spectrum of access
methods for similarity queries in metric spaces, a practical
solution that can be fully supported by existing RDBMS
with high efficiency still remains an open problem. In this
paper, we present MSQL, a practical solution for answering
similarity queries in metric spaces fully using SQL. To the
best of our knowledge, MSQL enables users to find similar
objects by submitting SELECT-FROM-WHERE statements
only. MSQL provides a uniform indexing scheme based on
a standard built-in B+-tree index, with the ability to accel-
erate the query processing using index seek. Various query

B Xiaoyong Du
duyong@ruc.edu.cn

Wei Lu
lu-wei@ruc.edu.cn

Jiajia Hou
houjiajia@ruc.edu.cn

Ying Yan
ying.yan@microsoft.com

Meihui Zhang
meihui_zhang@yeah.net

Thomas Moscibroda
moscitho@microsoft.com

1 DEKE, MOE and School of Information, Renmin University
of China, Beijing, China

2 School of Computer Science & Technology, Beijing Institute
of Technology, Beijing, China

3 Microsoft Research, Beijing, China

4 Microsoft Azure, Redmond, WA, USA

optimization techniques are incorporated inMSQL to signif-
icantly reduce CPU and I/O cost.We deployMSQL on top of
PostgreSQL. Extensive experiments on various real data sets
demonstrate MSQL’s benefits, performing up to two orders
ofmagnitude faster than existing domain-specificSQL-based
solutions and being comparable to native solutions.

Keywords Similarity search · Metric space · Query
optimization · SQL-based · RDBMS

1 Introduction

Similarity search is a primitive operation that is at the heart
of a wide spectrum of database applications, including face
recognition, fingerprint matching in multimedia databases
[1,33], location based services in spatial databases [35], error
checking in text retrieval [3], pattern recognition (e.g., DNA
or Protein sequences) in computational biology [29], etc. A
thorough studyon similarity search canbe found in the survey
[7,17]. Given a query object q and a collection of objects
R, similarity search finds the set of objects from R whose
distances to q are no larger than a user-defined threshold θ .

A naive approach to processing similarity queries is to
perform a sequential scan over the entire data set R, which
results in a query processing cost that increases linearly with
the cardinality of R. Over decades, there has been significant
interest in designing better access methods to support effi-
cient similarity search. As shown in Fig. 1, these solutions
can be categorized according to their access methods and
system support.

A majority of solutions—native Solutions—focus on
building new indexing techniques as stand-alone systems to
improve efficiency. These solutions are optimized for their
own specific applications and according to their own cost

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0481-6&domain=pdf

830 W. Lu et al.

Fig. 1 Existing solutions in relation to MSQL

models which are typically hard to generalize. Examples in
metric spaces include the VP-Tree [32] and its variant [5],
M-Tree [9] and its variants [2,19], D-Index [11], P-Sphere
Tree [14], TV-Tree [22], etc. In themore restrictedEuclidean
spaces, there are kd-tree, Quadtree, Grid, X-tree, and solu-
tions based on Tries and inverted indexes [4,15,21,30] have
been proposed under the edit distance metric in text spaces.

There also exist some solutions that index the data using
the B+-trees and answer similarity queries by probing B+-
trees. Examples include the UB-tree, iDistance [18,34] for
Euclidean spaces, and Bed -tree [36], PBI [23] for text spaces
and M-Index [25], SPB-tree [8] for metric spaces. Never-
theless, these solutions cannot be effectively integrated into
RDBMS. The reason is twofold. First, these solutions require
new index probing mechanisms which are not supported by
existing RDBMS unless new APIs are implemented (details
are presented in Sect. 2.3). However, integrating new APIs
into open source RDBMS is not trivial and it is infeasible
to add new APIs to commercial RDBMS. Second and worse
yet, as we shall discuss in Sect. 3, even when integrating
these solutions into RDBMS with newly introduced APIs,
their performance can be degraded to table scans, canceling
the effect of index construction.

The alternative to the above solutions are SQL-based
solutions. An SQL-based solution is attractive due to its
high portability across various commercial and open source
RDBMS. Besides, it automatically inherits features and per-
formance enhancements that are available by default in
the relational world, yet are often missing in native solu-
tions (e.g., transactions, access control and replication, etc.).
Decades of research and development in RDBMS have led
to standardized querying interfaces and many sophisticated
optimizations which could be leveraged in designing the
solution to similarity search. The R-tree and B+-tree are
standard built-in indices used in existing RDBMS to serve

similarity search in low-dimensional spaces. For instance,
z-kNN [31] processes k nearest neighbor queries over
Euclidean spaces using SQL by transforming every multi-
dimensional point into a one-dimensional value (z-value),
which is then indexed using a B+-tree. Text-SQL [15] is the
only known method to process string similarity search under
edit distancemetric usingSQL.Yet, finding an efficient SQL-
based solution for general metric spaces still does not exist
and has remained an open problem for a long time. This is
the problem we address in this paper.

Designing SQL-based solutions for efficient similarity
search in metric spaces is challenging for several reasons.
First, the proposed solution must be generic and portable
across RDBMS, i.e., the solution must be based on stan-
dard built-in index structures (typically including B+-tree,
R-tree, and hash index) and index probing mechanism sup-
ported by existing RDBMS. To the best of our knowledge,
there do not exist any precise solutions that answer similar-
ity queries in metric spaces based on the R-tree and hash
index, while B+-tree-based solutions cannot be integrated
into existing RDBMS unless new APIs are provided, which
is obviously infeasible in commercial RDBMs. Second, it is
hard to guarantee the efficiency and scalability of the SQL-
based solution, especially when data volume is large and
when data are frequently deleted/inserted/updated. How to
design optimizations based on the features of optimized SQL
operators toward a solution with high efficiency in a dynamic
environment is a challenging issue.

In this paper, we proposeMSQL, a new solution to simi-
larity search in metric spaces using SQL, which can be fully
supported by existing RDBMS. By implementing similarity
functions as UDFs, similarity queries can be expressed using
standardSELECT-FROM-WHEREstatements. Suppose that
each object r ∈ R has M attributes R : {A1, A2 . . . , AM }
and the first N attributes A : {A1, A2 . . . , AN } are used for

123

MSQL: efficient similarity search in metric spaces using SQL 831

similarity measurement, i.e., r is considered a similar object
to a query q if DIST(r [A], q[A], θ) returns true (if and only
if the distance between r and q does not exceed θ), where
DIST is the distance function, r [A] (or q[A]) is the value
list of object r (or q) over attribute listA. We implement the
distance function as a UDF and hence the similarity queries
can be answered using SQL as follows:

SELECT R.A1, …, R.AN

FROM R

WHERE DIST(R[A], q[A], θ);

To evaluate this query, a vanilla query engine in RDBMS
would essentially have to conduct a sequential scan (i.e., table
scan) of the relation R and apply the UDF comparison as a
post-processing filter. As frequently pointed out in the litera-
ture, this makes the cost of sequential scan prohibitive when
the data set is large or the distance computation is expensive.
For these reasons, we target a solution with index seek. In
this paper, we propose a B+-tree-based index structure to
process similarity queries which is generally and efficiently
supported in existing RDBMS.

The basic idea of our solution is to introduce an additional
column I to the original table and build a B+-tree index over
column I . To support efficient similarity search, values of
attribute I must satisfy at least two requirements: (1) any two
rows of I values are comparative, and hence it is possible to
build the B+-tree index, and (2) I should encode the relative
distance information ofA values so that it is possible to prune
the objects that are not result candidates based on the attribute
values over I , i.e., we can employ the index seek instead of
table scan to process similarity queries (see Sect. 3 for how
to design such an index column I). With column I , we can
use the following statement to conduct similarity search.

SELECT R.A1, …, R.AN

FROM R

WHERE LOCATE(R.I , @ranges) AND

DIST(R[A], q[A], θ);

In the above statement, we introduce another UDF LOCATE
(R.I , @ranges) as a filter, with which, objects whose values
of attribute I do not fall into the range(s)@ranges are pruned.
In other words, LOCATE works as an index probing func-
tion to filter out the unqualified objects. Objects which pass
the LOCATE filter are further refined by function DIST. For
example, filter 1 ≤ R.I ≤ 10will invoke an index seek to fig-
ure out candidates with R.I in range [1, 10], which are then
refined by function DIST. Intuitively, when the number of
search ranges is small, the above SELECT-FROM-WHERE
SQL statement will always invoke index seek to identify

candidates. Nevertheless, as pointed out in existing work
[23,24], to enable fast query processing against a data setwith
millions of objects, it is often necessary to have hundreds or
thousands of search ranges in WHERE conditions, making
the query optimizer resort to table scan to identify the can-
didates. To address this issue, we propose three optimization
techniques. First,we propose a query rewriting technique that
transforms the user-submitted SQL statement to a two-table
join-based SQL statement. For the rewritten and join-based
SQL statement, the query optimizer always invokes index
seek to identify candidates and then refines each of them in
turn by function DIST. Second, to improve the query perfor-
mance, we propose a new pruning technique, under which
MSQL is able to reduce both the number of search ranges
@ranges and the upper bound of each unpruned search range
while keeping the lower bound invariant. Third, we further
investigate the problem ofminimizing the number of objects,
taken as candidates, residing in the unpruned search ranges
under the new pruning rule.

MSQL eliminates the limitations of existing indexing
methods and supports multiple types of similarity queries
which fall into the following categories using a single
SQL statement: (1) different similarity functions over the
same column, (2) the same similarity function over differ-
ent columns, (3) different similarity functions over different
columns. In summary, our contributions are as follows:

– To the best of our knowledge, MSQL is the first compre-
hensive solution for similarity queries in metric spaces
using SQL. MSQL is able to be deployed in any of exist-
ing RDBMS with the standard built-in B+-tree index.

– MSQL provides a generic framework through which it
enables objects of any data type in metric spaces to be
indexed using a B+-tree. We propose a query rewriting
technique to make sure that the RDBMS query optimizer
always employs index seek to process similarity queries.

– To improve query performance, we propose a new prun-
ing rule that is able to reduce the number of predicates
in WHERE conditions of the SQL statement. Further,
we investigate the problem of minimizing the number of
candidates in similarity search. We prove the problem is
NP-hard and propose a heuristic approach.

– Wepresent how to do insert, delete, and update operations
in MSQL. Brought by the benefit of RDBMS, MSQL is
able to perform similarity querieswhile other datamanip-
ulation operations including insert, delete, and update,
are executed simultaneously. To the best of our knowl-
edge, this is the first work to investigate the problem of
processing similarity queries in a dynamic environment.

– We deploy MSQL on top of PostgreSQL and conduct
extensive experiments on various real data sets under
both static and dynamic environments. These experi-

123

832 W. Lu et al.

Table 1 Symbols and their definitions

Symbol Definition

D A metric space
R The input dataset in D
dist (r, r ′) The distance between two objects r and r ′ in D
|r, r ′| A simple representation of dist (r, r ′)
R The M-attribute schema storing R into a relation
A The first N attributes of R used for similarity search
q A query object in D
θ A query threshold
P A set of pivots
pi A pivot in P
PR
i The partition of R that corresponds to pi

LBi The lower bound of search range for partition PR
i

U Bi The upper bound of search range for partition PR
i

ments demonstrate the benefits of MSQL, outperforming
existing techniques by up to two orders of magnitude.

The rest of the paper is organized as follows. Section 2
formalizes the problem, and discusses related work. Sec-
tion 3 gives an overview of the MSQL framework. Section 4
presents the optimizations. Section 5 reports the experimen-
tal results and Sect. 6 concludes the paper.

2 Preliminaries

In this section, we formalize the problem, review the
reference-based partitioning paradigm, and discuss related
work. For reference, Table 1 lists symbols and definitions
that are used throughout the paper.

2.1 Problem definition

We consider data objects which are located in a metric space
D. Given two data objects r and r̄ , |r, r̄ | represents the dis-

tance between r and r̄ in D. |r, r̄ | is quantified by some
similarity measurement which is a metric, i.e., it satisfies
four requirements:

• |r, r̄ | ≥ 0 (nonnegative);
• |r, r̄ | = 0 iff r = r̄ ;
• |r, r̄ | = |r̄ , r | (symmetry);
• |r, r̄ | ≤ |r, r ′| + |r ′, r̄ | (triangle inequality).

Definition 1 (Similarity Search) Given a query object q, a
data set R, and a threshold θ , the similarity search identifies
objects in R with distance to q less than or equal to θ , i.e.,
{r |r ∈ R, |r, q| ≤ θ}.
Problem statement Unless otherwise specified, any object or
data set we mention in the paper lies in the metric space D.
Without loss of generality, we assume there exists an M-
attribute schema for data set R, in which the similarity is
measured on colorbluea subset with N attributes (denoted
as A : {A1, A2 . . . , AN }) N ≤ M . Moreover, R is main-
tained in a logically relational table with schema R before
any queries are issued. In this paper, we focus on efficiently
processing similarity queries in metric spaces using SQL
statements.

2.2 Reference-based partitioning paradigm

Data partitioning Reference-based partitioning methods are
widely used to process similarity queries in metric spaces,
colorbluee.g., M-tree [9], iDistance [18] and PBI [23]. The
rationale behind them is to first select m objects as pivots
(pivots are highlighted in red in Fig. 2a), and then assign
each object to a single pivot according to a certain strategy.
For example, in iDistance, ∀r ∈ R is assigned to its closest
pivot (shown in Fig. 2a) or furthest pivot, while in PBI, ∀r ∈
R is assigned to the pivot that maximizes the probability

(a) (b)

Fig. 2 An example of reference-based partitioning methods. a Assign objects to the closest pivots, b illustration of Theorem 1

123

MSQL: efficient similarity search in metric spaces using SQL 833

Table 2 Pivot selection strategies

Approach Domain Pivot selection

iDistance [18,34] Euclidean space K-means
PBI [23] Text space MaxProb
M-Index [25] Metric space Random
MP-D [28] Text space MaxVar

of r being pruned with respect to a given query workload.
After the assignment completes, the whole data space is split
into m disjoint partitions. Let P be the set of pivots selected.
∀pi ∈ P, PR

i denotes the partition with objects from R that
take pi as their pivot. Within each partition PR

i , the distance
|r, pi | from ∀r ∈ PR

i to pi is also maintained.
Query processing When the whole data set is split into
disjoint partitions, similarity queries can be efficiently pro-
cessed by examining each partition PR

i individually. Then,
following the filtering-and-verification paradigm, the simi-
lar objects within PR

i can be determined. The filtering rule is
based on Theorem 1, in which ∀r ∈ PR

i , |r, pi | ∈ [|pi , q| −
θ, |pi , q|+θ] are taken as candidates. Finally, each of the can-
didates is verified and similar objects are returned. For ease
of illustration, we refer to interval [|pi , q| − θ, |pi , q| + θ]
as the search range for partition PR

i , and denote by LBi
and UBi the lower and upper bound of the search range,
respectively, i.e., LBi = |pi , q| − θ and UBi = |pi , q| + θ

(Fig. 2b).

Theorem 1 [18,34] Given a partition PR
i , ∀r ∈ PR

i , the
necessary condition that |q, r | ≤ θ is:

LBi = |pi , q| − θ ≤ |pi , r | ≤ |pi , q| + θ = UBi (1)

Pivot selection Under Theorem 1, various pivot selection
methods are proposed (listed in Table 2). Random used in
M-Index randomly selects a set of objects from R as piv-
ots. k-means used in iDistance partitions R into L clusters
and the center of each cluster is taken as the pivots. Max-
Prob used in PBI selects a set of L pivots from R so that the
expected number of candidates with respect to these pivots is
minimized. MaxVar used in MP-D selects a set of L pivots
from R so that the variance of objects in R with respect to
these pivots is maximized.

2.3 Related work

Although there exists few work that processes similarity
queries using SQL in more restricted Euclidean spaces and
text spaces [15,31], to the best of our knowledge, this is the
first solution in general metric spaces. Our study is related
to previous work on Native Solutions and SQL-based solu-
tions shown in Fig. 1.
Native solutions The majority of existing solutions belong
to native solutions that focus on either (i) designing new

index structures or (ii) designing new index probing algo-
rithms with existing indices, as native engines to improve
efficiency. Native solutions that design new index structures
and new index probing algorithms to process efficient simi-
larity queries include (1) the VP-Tree [32] and its variant [5],
the GH-tree [27], GNAT [6], the M-Tree [9] and its variants
[2,19], the D-Index [11], P-Sphere Tree [14], TV-Tree [22]
over metric spaces, (2) kd-tree, Quadtree, Grid, X-tree over
more restricted Euclidean spaces, and (3) Flamingo [4], the
Tries [21] overmore restricted text spaces.Considering there
do not exist any built-in indices that match these new index
structures properly, it is hard to generalize and integrate such
kind of solutions into existing RDBMS.

The other native solutions adopt existing built-in index
structures, like B+-tree and R-tree, while developing new
index probing algorithms. Among these solutions, the major-
ity of them are designed for either the Euclidean spaces [18,
34] or the text spaces [23,36]. Although this kind of native
solutions adopt built-in index structures used in existing
RDBMS, these solutions require new index probing mech-
anisms which are not supported by existing RDBMS unless
new APIs are implemented. Examples include the UB-tree,
iDistance [18,34], and Bed -tree [36], PBI [23], M-Index [25]
and SPB-tree [8], respectively. For example, iDistance and
PBI utilize a bi-directional probing algorithm, and M-Index
adopts a recursive probing algorithm, requiring multiple-
round traversals from the root to leaves, to retrieve candi-
dates, while the original B+-tree in RDBMSmerely supports
one-round, single-directional probing algorithm simultane-
ously. More importantly, as we shall discuss in Sect. 3, even
when integrating this kind of solutions into RDBMS with
newly introduced APIs, the performance of them could be
degraded to table scans, nullifying the effect of index con-
struction. Besides, these solutions were originally designed
for static data sets and cannot work well in a dynamic work-
load that includes insert, update, and delete operations.

SQL-based solutions z-kNN [31] processes k nearest neigh-
bor queries over Euclidean spaces in RDBMS using SQL.
Specifically, by first efficiently extracting a set of approxi-
mate k nearest neighbors, it is able to obtain a tight search
interval. z-kNN then issues a similarity query using this
search interval to find similar objects, from which k objects
with the smallest distances are finally identified as the k near-
est neighbors. Text-SQL [15] is the only known method to
process string similarity search under edit distance metric
using SQL. Text-SQL determines the candidates by issuing
a complex quad-table join. At the preprocessing phase, Text-
SQL transforms each string r in R or q into a sequence of
Q-grams, which are then maintained in two separate tables
R′ and and T Q′. At the query processing phase, Text-SQL
issues a complex quad-table join on R, R′, T Q and T Q′ to
determine all objects that share a certain number of Q-grams

123

834 W. Lu et al.

Fig. 3 An overview of MSQL

with q and selects them as candidates. Note that the cardinal-
ity of R′ is multiple times larger than that of the input data
set R. Obviously, performing the above quad-table join is
rather expensive. Instead of conducting an expensive quad-
table join, MSQL processes similarity queries by conducting
an index join over R and another small relation, and hence
improving the query performance significantly.

In this paper, we aim to propose a generic solution for
similarity query processing in metric spaces that is indepen-
dent on specific RDBMS. Hence, the proposed solution must
be based on built-in indices that are fully supported in both
commercial and open source databases. Such kind of indices
includes B+-tree, R-tree, and hash index, in which B+-tree
is used for indexing pair-wise comparable objects, R-tree
is used for indexing low-dimensional spatial data, and hash
index is typically used for answering equivalent query. To the
best of our knowledge, there do not exist any precise solu-
tions that answer similarity queries in metric spaces based
on the R-tree and hash index, while there exist some works
showing that answering similarity queries using B+-trees is
feasible. Hence, in this paper, we propose a B+-tree-based
solution to process similarity queries in existing RDBMS.

3 Query processing in MSQL

3.1 An overview

Figure 3 gives an overview of MSQL, which processes the
similarity query in the following two stages:

• Index building We utilize a mapping scheme that trans-
forms values of objects over attributes A to pair-wise
comparable signatures. Importantly, with this transfor-

mation, the index probing function used in the candidate
selection phase is able to determine whether an object is
definitely dissimilar to q by simply examining its signa-
ture. For this reason, we maintain signatures of objects in
the same relation R by appending a new column named I
and build a B+-tree index over column I as all signatures
are pair-wise comparable.

• Query processingTomake the auxiliary information used
in MSQL transparent to users, we provide a simple UDF
SIMQ and users can obtain similar objects by issuing an
SQL statement: SELECTSIMQ(R,A, q[A], θ, DI ST).
We then rewrite the above SQL statement with the
predicates that bound the signatures in a sequence of
non-overlap, strict-increasing intervals to figure out can-
didates and the predicate DIST as a post-processing filter
to verify the candidates. MSQL enables candidate selec-
tion using the pre-built B+-tree index.

Our solution can be applied easily to any existing RDBMS
that supports UDFs, such as PostgreSQL, MySQL, SQL
Server, Oracle, etc.

3.2 Index building

In this subsection, we propose a signature generation scheme
and present how to create the B+-tree.

3.2.1 Signature generation scheme

To enable fast similarity query processing using index seeks,
the generated signatures must satisfy the following require-
ments:

123

MSQL: efficient similarity search in metric spaces using SQL 835

– Requirement 1: signatures are pair-wise comparable.
– Requirement 2: signatures located in a set of intervals are
qualified as candidates.

– Requirement 3: let Si .min and Si .max be the mini-
mum and maximum signatures of objects in partition
PR
i . Given two partitions PR

i and PR
j , there is no

overlap between interval [Si .min, Si .max] and interval
[S j .min, S j .max].

Requirement 1 makes sure that the signatures can be
indexed using a B+-tree, and Requirement 2 enables us to
determine candidates by probing signatures in each interval
using an index seek. Requirement 3 guarantees that signa-
tures of objects in each partition are continuously maintained
so that no signatures from other partitions will be accessed
when traversing signatures of a partition.

With respect to existing reference-based partitioning
methods, we find that most of themmaintain all signatures in
main memory and no indexing methods over signatures are
considered. Three related works indexing signatures using
B+-trees are iDistance [18,34], iDistance variants M-Index
[25] and PBI [23], which map each object r ∈ PR

i into a one-
dimensional value (V (r)) based on the following equation:

V (r) = i ∗ c + |r, pi |

where c is a constant and must be set sufficiently large in
order to avoid overlap between interval [Si .min, Si .max]
and interval [S j .min, S j .max]. In practice, c is difficult to
set, since c largely depends on the application scenarios and
data distributions. An improper c could result in a mixture of
signature ranges from different partitions and further gener-
ate an incorrect set of candidates when processing similarity
queries. To address this issue practically, we propose a sig-
nature generation scheme presented in Definition 2 using
which the generated signatures completely satisfy the three
requirements.

Definition 2 (SignatureGenerationScheme) Given adataset
R and a set of pivotsP,∀r ∈ R, we assign r to its closest pivot
in P. ∀PR

i ⊆ R, ∀r ∈ PR
i , we set the signature (denoted as

S(r)) of r as 〈i, |r, pi |〉, where i is the partition ID in R. ��
Given two signatures 〈i, d〉 and 〈 j, d ′〉, we compare 〈i, d〉

and 〈 j, d ′〉 as follows:
⎧
⎨

⎩

〈i, d〉 > 〈 j, d ′〉, if i > j or (i = j and d > d ′),
〈i, d〉 = 〈 j, d ′〉, if i = j and d = d ′,
〈i, d〉 < 〈 j, d ′〉, otherwise;

(2)

Theorem 2 Signatures generated using Definition 2 meet
the above three requirements. ��

Proof We shall prove that our signature generation scheme
meets the three necessary requirements separately.

– Requirement 1: signatures are pair-wise comparable.
This requirement could be directly proved based on our
comparison rule.

– Requirement 2: signatures locating in a set of intervals
are qualified as candidates. We consider each partition
separately. For each partition Pi , based on Theorem 1,
only objects with distances to pi in range [|pi , q| −
θ, |pi , q|+θ] are taken as candidates, while in our cases,
the signatures for these objects reside in [〈i, |pi , q| −
θ〉, 〈i, |pi , q| + θ〉].

– Requirement 3: Given two partitions PR
i and PR

j , there
is no overlap between interval [Si .min, Si .max] and
interval [S j .min, S j .max]. Given a partition PR

i , the
minimum and maximum signatures Si .min and Si .max
of objects in PR

i are 〈i, 0〉 and 〈i,∞〉. Similarly, given
another partition PR

j , S j .min and S j .max of objects in

PR
j are 〈 j, 0〉 and 〈 j,∞〉. According to our comparison

rule, 〈i, 0〉 > 〈 j,∞〉 if i > j and 〈 j, 0〉 > 〈i,∞〉 other-
wise (Note i �= j). Therefore, there is no overlap between
intervals [Si .min, Si .max] and [S j .min, S j .max]. ��

The signature generation scheme is able to keep the partitions
non-intersect (Requirement 3). As a result, when probing
signatures of candidates in an individual partition, the prob-
ing scheme is able to continuously access the corresponding
index pages, while no signatures from the other partitions in
the remaining index pages are probed, hence avoiding unnec-
essary I/O and redundant computations.

3.2.2 B+-tree construction

Based on the signature generation scheme and the compari-
son rule, we can now build the index over the signatures as
follows:

– Storing pivots in PTableWe suppose the pivots have been
selected and stored in a table calledPTable.1 PTable con-
sists of attribute PID (pivot ID) with integer data type and
its original attributes A;

– Appending the attribute I to R We append a new col-
umn I to R, and ∀r ∈ PR

i , we update r [I] (i.e.,S(r)) to
〈i, |r, pi |〉.

– Building the B+-tree indexAs a composite data type, we
need to integrate the comparison rule as a UDF and then
build an B+-tree index over attribute I . An alternative
solution is to decompose I into two columns I1, I2, and

1 We will propose the pivot selection method in Sect. 4.2.

123

836 W. Lu et al.

build a composite index over (I1, I2). The following SQL
statements show the details on how to build the index.

1: CREATE TYPE iPair as (key INTEGER,value DOUBLE);

2: ALTER TABLE R ADD I iPair;

3: UPDATE R set R.I = (

SELECT (S.PID, DIST(S[A], R[A]))::iPair as I1
FROM PTable S

ORDER BY I1.value

LIMIT 1);

4: CREATE INDEX I-INDEX ON R

USING BTREE (I ASC NULL LAST);

Example 1 (Index Building) Suppose there is a relation R
with three attributes: ID (customer ID), Name (customer
names), and Coord (customer location coordinates). R has
10 records (see Fig. 4). To speed up nearby location query
processing, before any query is issued, we first build a PTable
with two attributes PID andCoord. Supposewe have selected
5 pivots stored in PTable. Subsequently, we transform R to
R′ by appending a signature attribute I_coord, in which
∀r ∈ R, we update S(r) to 〈i, |r, pi |〉 based on Definition
2. Transformation from R to R′ is shown in the right part of
Fig. 4 (L1 is used as the similarity metric). Finally, we build
the B+-tree index over attribute I_coord. Note that simi-
lar index construction can be made over Name attribute if
we target to efficiently answer approximate customer name
queries. We omit the details as they follow the same index
building routine but with different similarity measures. ��

3.3 Data manipulation

MSQL fully utilizes RDBMS-based techniques to handle
manipulation, including data insertion, data update, and data
deletion.

– Data insert and updateWe create an after insert, update
trigger on input relation R. After an insert or update
operation of any object r is executed, the trigger is fired
to invoke the following steps: (1) finding the closest pivot
residing in PTable to r , (2) computing the signature of
r based on its closest pivot, and (3) updating I attribute
value using this signature accordingly. Aswe build a B+-
tree index over attribute I , the indexwill be automatically
maintained by RDBMS. To do data insert and update,
the averaged time cost of computing the signature of r is
|P| ∗ �, where � is the averaged distance computation
cost in R. The time complexity of updating the B+-tree
index is O(log |R|). In practice, computing the signature
of each object could be accelerated by existing indexing

techniques, but this optimization is out the scope of this
paper.

– Data deletion As we maintain signatures in a separate
column of the same relation, for an object r to be deleted,
the signature of r will be removed as well. Besides, the
index will also be automatically updated by RDBMS.
Therefore,wedonothing for data deletion.The time com-
plexity of removing r from the original relation together
with updating the B+-tree index is O(log |R|).

3.4 Query processing

3.4.1 Baseline approach

As presented in Sect. 2.3, reference-based approaches, e.g.,
iDistance and its variants, process similarity queries using
various probing mechanisms which are not directly sup-
ported in existing RDBMS. For this reason, we abstract
the core techniques of reference-based approaches using
SQL to process similarity queries. The rationale behind
the reference-based approaches is to follow the filtering-
and-verification paradigm, i.e., (1) figure out candidates by
examining objects in each partition separately based on The-
orem1 and (2) verify candidates by computing their distances
to the query.

Lemma 1 Given a data set R,∀r ∈ R with signature S(r) =
〈i, |pi , r |〉, the necessary condition that |q, r | ≤ θ is:

LBi ≤ S(r) ≤ UBi (3)

where LBi = max{〈i, |pi , q| − θ〉, 〈i, Si .min〉} and U Bi =
min{〈i, |pi , q| + θ〉, 〈i, Si .max〉}.2
Proof First, based on Definition 2, object r with signa-
ture S(r) = 〈i, |pi , r |〉 belongs to partition PR

i . Based
on Theorem 1, the necessary condition that |q, r | ≤ θ is
|pi , q| − θ ≤ |pi , r | ≤ |pi , q| + θ , i.e., 〈i, |pi , q| − θ〉 ≤
S(r) ≤ 〈i, |pi , q|+θ〉. Second, Si .min, Si .max are the min-
imum and maximum distances of objects residing in PR

i to
pi . As r ∈ PR

i , we have 〈i, Si .min〉 ≤ S(r) ≤ 〈i, Si .max〉.
Therefore, we can derive Eq. 3. ��

Based on Lemma 1, it is able to answer similarity queries
by issuing an SQL statement below:

SELECT R.A1, …, R.AN

FROM R

WHERE LOCATE(R.I , @ranges) AND

DIST(R[A], q[A], θ);

2 As pointed out by existing reference-based approaches, by explicitly
maintaining Si .min and Si .max , thewhole partition canbe prunedwhen
|pi , q| − θ > Si .max , i.e., UBi < LBi .

123

MSQL: efficient similarity search in metric spaces using SQL 837

Fig. 4 An example of building the B+-tree index

Fig. 5 A running example of the baseline approach with query q[coord] = (4, 4) and θ = 3 under L1 similarity metric

In the above SQL statement, predicate LOCATE(R.I ,
@ranges) bounds the signatures, R.I , in a collection of
search ranges, denoted as @ranges=∪i∈[1,|P|]〈LBi ,UBi 〉,
to figure out candidates, and predicate DIST as a post-
processing filter to verify the candidates. Hence, a full SQL
statement to process similarity search by unfolding the pred-
icate LOCATE(R.I , @ranges) is shown below:

SELECT R.A1, …, R.AN

FROM R

WHERE (R.I between LB1 and UB1 OR

R.I between LB2 and UB2 OR

… OR

R.I between LB|P| and UB|P|) AND

DIST(R[A], q[A], θ);

Example 2 (Baseline Approach) Continue the example that
is presented in Fig. 4. Suppose that a user issues a query to
find customers with nearby locations, e.g., close to coordi-
nate q[coord] = (4, 4)within L1 distance 2. Figure 5 gives a
running example of how thebaseline approachworks. Specif-
ically, we compute |pi , q|, LBi andUBi , ∀pi in PTable, and
then issue an SQL statement (shown on the right part of
Fig. 5) to find nearby customers. ��

Typically, each search range condition triggers an index
seek on the composite index and a progressive heap scan

is conducted to merge the candidates from individual index
seeks.Nevertheless, asweobserve inmany cases3 (e.g.,when
the size of the data set is large or the dimensionality of the data
set is relatively high), to achieve a good query performance,
it is necessary to select thousands or even ten thousands
of pivots, leading to a large number of search range con-
ditions. As we will discuss later, using an increasing number
of search range conditions could result in a smaller number
of candidates. Nevertheless, using a large number of search
range conditions potentially causes high computation cost.
The reason is twofold. First, it significantly increases the
cost of selecting the best query plan in the query optimizer.
For example, according to our experiments, the optimizer in
PostgreSQL even takes 2ms to generate the query plan in the
SQL statement involving in only 10 search range conditions.
Second andworse still, it resorts to table scan instead of index
seek when the number of search range conditions exceeds a
threshold, nullifying the effect of index seek. To address these
two issues in practice, we then propose a join-based query
rewriting scheme.

3.4.2 Join-based approach

To make the implementation details transparent to users,
i.e., it is unnecessary for users to be familiar with the

3 This observation is also investigated in [23].

123

838 W. Lu et al.

Table 3 An example of
SearchRangeSet

LB U B

〈1, 5〉 〈1, 9〉
〈2, 2〉 〈2, 6〉
〈3, 0〉 〈3, 3〉
〈4, 2〉 〈4, 6〉
〈5, 4〉 〈5, 7〉

implementation details of processing similarity queries in
MSQL, we provide a simple UDF SIMQ so that users
can obtain similar objects by issuing an SQL statement:
SELECT SIMQ(R,A, q[A], θ, DI ST). After receiving the
above SQL statement, we first build a temporary schema,
named as SearchRangeSet, which stores the lower
bound and upper bound of every search range with respect
to a given query. We then compute [LBi ,UBi] for each
partition PR

i , and insert [LBi ,UBi] (i ∈ [1, |P|]) into
SearchRangeSet, an example of which is listed in
Table 3, where the query and the pivots are given under the
settings shown in Fig. 5. We finally rewrite the SELECT
SIMQ(R,A, q[A], θ, DI ST) statement as the following
join-based SQL statement.

SELECT R.A1, …, R.AN

FROM R, SearchRangeSet SRS

WHERE I BETWEEN SRS.LB and SRS.UB AND

DIST(R[A], q[A], θ);

In the above SQL statement, we perform a Cartesian product
over two relations R, SearchRangeSet with the predicate
that qualifies records in R with signatures R.I residing in any
range of 〈SRS.LB, SRS.UB〉. As the cardinality of relation
SearchRangeSet is relatively small and signatures of R
are built with an index, the execution engine will resort to an
index join to retrieve the candidates and similar objects are
returned by verifying the candidates with the filter DIST.

3.4.3 Discussion

Extension for kNN query processingMSQL could potentially
be extended to support k nearest neighbor (a.b.a kNN) search
that returns k objects from R with the smallest distances to q.
Like existing reference-based approaches, we can transform
kNN search into a sequence of similarity searches, each of
which is processed using MSQL. To avoid redundant com-
putation, we make two slight adjustment of MSQL. First,
we use DIST(R[A], q[A], θ) as the computation function
rather than the verification function. Second, search ranges
of each partition that have been examined in the previous
iteration will be removed in the current iteration. Take two
continuous similarity queries with threshold θ and θ ′, respec-
tively, for example.According toTheorem1, the search range
with threshold θ ′ in partition PR

i is [|pi , q|−θ ′, |pi , q|+θ ′].

However, because objects with distances to pi in [|pi , q| −
θ, |pi , q|+θ] have been examined in the previous iterations.
Thus, we adjust the search range in the current iteration to
[|pi , q| − θ ′, |pi , q| − θ) ∪ (|pi , q| + θ, |pi , q| + θ ′]. In this
way, no objects will be examined twice. In this paper, we
focus on the similarity query processing and leave the kNN
query processing as our future work.
Limitations of the join-based approach Although the join-
based approach avoids issuing a table scan over R, there are
still two issues that are required to address.

– To obtain LBi and UBi in Eq. 3, it is necessary to
maintain Si .min and Si .max in PTable for every parti-
tion.However, introducing Si .min and Si .max will cause
extra maintenance cost. For any delete, insert, update of
an object r ∈ PR

i , we need to check whether Si .min
and Si .max are required to update. For any insert of
an object r ∈ PR

i , we first need to examine whether
|pi , r | = Si .min or |pi , r | = Si .max and if so, we
then replace Si .min or Si .max using |pi , r | accord-
ingly. The examination cost takes the time complexity
O(log |P|). For any delete of an object r ∈ PR

i , we
examine whether |pi , r | = Si .min or |pi , r | = Si .max ,
and if so, we update Si .min = min∀o∈PR

i ∧o �=r |pi , o|
or Si .max = max∀o∈PR

i ∧o �=r |pi , o|. The time com-
plexity of this update is O(log |R|). To update object r
with r ′, we need to examine whether any of |pi , r | and
pi , r ′ equals to Si .min or Si .max , and if so, we need to
update Si .min and Si .max accordingly. The time com-
plexity of this update is O(log |R|) as well. Apparently,
in a dynamic workload environment, any delete, insert,
update operationwill cause a conflictwith the select oper-
ation inPTable, and hence degrading the similarity query
performance. To verify this observation, we conduct a
comprehensive experiment study in Sect. 5.2.3 on how
the performance of processing the similarity queries is
affected when a certain number of delete, insert, update
operations occur simultaneously.

– As pointed out in [23,24], hundreds or thousands of piv-
ots are often used in order to speed up similarity query
processing. Although it is able to generate less number
of candidates by using an increasing number of pivots, in
many cases, the bound of each search range [LBi ,UBi]
is still loose and the majority of partitions still cannot
be entirely pruned. In this way, it is arguably hard to
guarantee the efficiency and scalability of the proposed
SQL-based solution since a large number of index seeks
are still invoked.

To address the above two issues, it is necessary to propose
a new pruning rule that obtain a tighter bound of [LBi ,UBi]
without maintaining Si .min and Si .max .

123

MSQL: efficient similarity search in metric spaces using SQL 839

4 Query optimization

By bounding the search range [LBi ,UBi] in partition PR
i ,

only the objects whose signatures locate in [LBi ,UBi] are
considered as candidates. Therefore, tominimize the number
of candidates, we need to find a tight [LBi ,UBi]. In this
section, we introduce two optimizations to achieve a near
optimal range selection:

– A new pruning rule: Compared with Theorem 1, the new
pruning rule can reduce the upper bound of search range
for each partition PR

i , while keeping the lower bound
unchanged, thereby enhancing the pruning power. Due
to this new pruning rule, we do not necessarily maintain
Si .min and Si .max and hence avoid extra maintenance
cost.

– A pivot selection mechanism: Based on our signature
generation scheme described in Definition 2, once the
set of pivots is given, signatures of objects are determin-
istic. Therefore, the problem of minimizing the number
of candidates is reduced to how to select a proper set of
pivots so that the number of objects locatedwith their sig-
natures in

⋃|P|
i=1[LBi ,UBi] is minimized. We prove that

selecting the optimal set of pivots is NP-hard, and hence
we propose an efficient heuristic approach instead.

4.1 Enhancing the filtering power with a new pruning
rule

By Theorem 1, ∀r ∈ PR
i , r is taken as a candidate as long as

|pi , r | ∈ [|pi , q| − θ, |pi , q| + θ]. The above pruning rule
filters out dissimilar objects in partition PR

i merely based on
pi while omitting the other pivots. Observing that in our data
partitioning schemewe assign each object to its closest pivot,
we consider whether it is possible to further filter out more
dissimilar objects using the other pivots.

Example 3 (Motivating Example) Continue the examples
presented in Figs. 4 and 5. Under Theorem 1, candidates in
partition PR

4 are r1, r4, r6,r8, r10 since their signatures lie in
range [LB4,UB4]. Consider the candidate r1 (r1[Coord] =
(10, 8)) with L1 distance = 6 to its closest pivot p4
(p4[Coord] = (5, 7)). Remind that each object is assigned
to its closest pivot. Hence, ∀p ∈ P, we can have |r1, p| ≥ 6
without computing |r1, p|. Now, consider pivot p3. A record
is taken as a candidate regarding p3 only if its signature is
bounded in range [LB3,UB3], i.e., [〈3, 0〉, 〈3, 3〉]. Appar-
ently, regarding p3, r1 is verified to be dissimilar to q since
〈3, |r1, p3|〉 /∈ [LB3,UB3]. Similarly, r6 and r8, underlined
in Table 4, can also be pruned based on p3. ��

As discussed in Example 3, with respect to partition PR
i ,

we can further filter out some objects that were originally

Table 4 Illustration of the new
pruning rule

Record |p4, r | S(r)

r1 6 〈4, 6〉
r4 2 〈4, 2〉
r6 4 〈4, 4〉
r8 5 〈4, 5〉
r10 3 〈4, 3〉

taken as candidates in PR
i using the other pivots. This leads

to another question we need to answer: which candidates
in PR

i can be pruned safely?. To answer this question, we
consider the following case:

– ∃pi , p j ∈ P, |p j , q| + θ < |pi , q| − θ . In this case, it is
guaranteed that for any candidate r ∈ PR

i , i.e., |pi , q| −
θ ≤ |r, pi | ≤ |pi , q|+θ , we have |p j , q|+θ < |pi , q|−
θ ≤ |r, pi | ≤ |r, p j | and hence, all objects in partition
PR
i can be completely pruned.

Based on this observation, we split the interval [|pi , q| −
θ, |pi , q| + θ] into two intervals [|pi , q| − θ, |p j , q| + θ]
and (|p j , q| + θ, |pi , q| + θ], if |p j , q| + θ ∈ [|pi , q| −
θ, |pi , q| + θ]. Because a candidate r is pruned if |r, pi |
locates in the second interval, we only examine the remaining
objects, i.e., those candidates with |r, pi | locating in the first
interval [|pi , q|−θ, |p j , q|+θ]. This pruning rule is always
true for any other pivot p j inP. Hence, we have the following
theorem:

Theorem 3 Given a query q, let pq be the pivot in P with
the minimum distance to q. Formally,

pq = arg min
p∈P

|q, p| (4)

Given a partition PR
i , ∀r ∈ PR

i , the necessary condition that
|q, r | ≤ θ is:

|pi , q| − θ ≤ |pi , r | ≤ |pq , q| + θ (5)

Proof Given a partition PR
i ,∀r ∈ PR

i , according toTheorem
1, the necessary condition that |q, r | ≤ θ is: |pi , q| − θ ≤
|pi , r | ≤ |pi , q| + θ . As |pq , q| ≤ |pi , q|, we need to prove
that objects belonging to PR

i with distances to q in the range
(|pq , q| + θ, |pi , q| + θ] are definitely dissimilar to q.

We provide the proof by contradiction. Suppose there
exists an object r ∈ PR

i with distance to q in (|pq , q| +
θ, |pi , q| + θ] and r is similar to q. According to the tri-
angle inequality, if |r, q| ≤ θ , then ∀p j ∈ P, we have
|p j , q| − θ ≤ |r, q| ≤ |p j , q| + θ . Therefore, consider-
ing pq is one pivot in P, we can have |r, q| ≤ |pq , q| + θ .
According to our partitioning method, each object in R is
assigned to the partition with the nearest pivot, and hence we
can have |r, pi | ≤ |r, pq |. This contradicts our assumption
that |r, pi | > |pq , q| + θ > |r, pi | + θ . ��

123

840 W. Lu et al.

Compared with Theorem 1, for each search range, Theo-
rem 3 is able to derive a tighter upper bound while keeping
the lower bound unchanged. For this reason, Theorem 3 can
get a tighter window size for each search range. Further, as
long as we collect sufficiently many good-quality pivots P,
for any query q, if there exist a pivot pq ∈ P that produces
a small |pq , q|, we can skip examining the entire objects in
each partition PR

i with |pi , q| − θ > |pq , q| + θ , and hence
reduce both CPU and I/O cost significantly. For this reason,
we do not explicitly maintain Si .min and Si .max in PTable,
and hence we are able to avoid extra maintenance cost and
locking overhead over PTable.

To answer similarity queries under the new pruning rule,
we do not need to modify any SQL statements. Instead,
we update UBi and LBi in Lemma 1, which are set to
〈i, |pq , q|+θ〉 and 〈i, |pi , q|−θ〉, respectively. In the remain-
der of this paper, unless otherwise specified, UBi and LBi
are set to 〈i, |pq , q| + θ〉 and 〈i, |pi , q| − θ〉, respectively.

4.2 Pivot selection

The number of candidates depends on the set of search ranges
⋃|P|

i=1[LBi ,UBi] as well as the signatures of objects. Con-
sidering that search ranges and signatures both depend on the
selected pivots, it is clear that the problem of selecting pivots
is crucial. Specifically, we want to select a given number of L
pivots so that the candidate size is minimized. L is a tuneable
parameter.

4.2.1 Cost model

Given a pivot pi ∈ P, let f pi (x, Q) be the probability density
function (PDF) that describes the relative likelihood for ran-
dom variable x to take on a given value with respect to pivot
pi over the query load Q. Formally, f pi (x, Q) is defined as:

f pi (x, Q) = |{q|q ∈ Q, |q, pi | = x}|
|Q| . (6)

Suppose we have selected a set of pivots P to do partition-
ing. Our cost model is motivated by the following question:
given an object r , a set of pivots P, and a query load Q, how
many times is r taken as a candidate over Q with respect toP?
Indeed, this problem can be generalized as: given an object
r and a set of pivots P, how much is the probability (denoted
as PP(r)) of r taken as a candidate when answering similar-
ity queries with respect to P? As r is merely maintained in
partition PR

i , we can have PP(r) = P{pi }(r).
To answer the above questions, we first give an example

of discrete probability density function f pi (x, Q) in Fig. 6.
Suppose there exists an object r (shown in red color) and

Fig. 6 A necessary condition to select r as a candidate

r is assigned to pi .4 Regarding pi , once a query q locating
outside the interval [|pi , r |−θ, |pi , r |+θ], we can guarantee
that |r, q| > θ , i.e., only for ∀q ∈ Q with |pi , q| ∈ [|pi , r |−
θ, |pi , r | + θ], r is possibly taken as a candidate. Further,
as discussed in Theorem 3, to finally select r as a candidate,
there cannot exist any other pivot p j ∈ P such that |p j , q| +
θ ≤ |pi , r |, i.e., among these q ∈ Q with |pi , q| ∈ [|pi , r |−
θ, |pi , r | + θ], r is finally qualified as a candidate only if
|pq , q| + θ ≥ |pi , r |. Therefore, we classify the relationship
among q, P and r into two categories:

– COND1: |pi , q| ∈ [|pi , r | − θ, |pi , r | + θ]
– COND2: |pi , q| ∈ [|pi , r |−θ, |pi , r |+θ] and |pq , q|+

θ ≥ |pi , r |.

Let φpi (r) be the probability that condition COND1 is sat-
isfied, and letφ′

pi (r)be the probability that conditionCOND2
is satisfied. Theoretically, Ppi (r) is the conditional probabil-
ity measuring the probability |pq , q| + θ ≥ |pi , r | under the
condition |pi , q| ∈ [|pi , r |−θ, |pi , r |+θ], and hence Ppi (r)
can be formalized as:

PP(r) = P{pi }(r) = φ′
pi (r)

φpi (r)
, (7)

where φpi (r) and φ′
pi (r) are

φpi (r) =
∑

|pi ,q|∈[|pi ,r |−θ,|pi ,r |+θ]
f pi (x, Q), (8)

φ′
pi (r)n =

∑

|pi ,q|∈[|pi ,r |−θ,|pi ,r |+θ]∧|pq ,q|+θ≥|pi ,r |
f pi (x, Q).

(9)

Given a set of pivots P, to answer similarity queries, we
can now compute the expected number of candidate objects
in R with regard to P as follows:

Lemma 2 Given a set of pivotsP and a data set R, to answer
a similarity query with threshold θ , the expected number
EP(R) of objects in R to be regarded as candidates is

EP(R) =
∑

PR
i ⊆R

∑

r∈PR
i

Ppi (r). (10)

4 Unless otherwise specified, we assume that r is assigned to pivot pi
in the remainder of this paper.

123

MSQL: efficient similarity search in metric spaces using SQL 841

Definition 3 (Pivot Selection) Given a query load Q, a data
set R, the problem of pivot selection is to select L pivots, P,
so that EP(R) defined in Eq. (10) is minimized:

argmin
P

∑

PR
i ⊆R

∑

r∈PR
i

Ppi (r). (11)

Theorem 4 Finding the optimal solution to pivot selection
is NP-hard.

Proof The k-means clustering problem is NP-hard when the
number of dimensions is not <2 [10]. We then reduce the
k-means clustering problem to the optimal pivot selection
problem. Equation 10 quantifies the expected number EP(R)

of objects in R to be regarded as candidates, in which EP(R)

is computed by aggregating the probability of r taken as a
candidate regarding P, ∀r ∈ R. The optimal pivot selection
problem is essentially the k-means problem with a different
optimization objective, i.e., the latter targets to minimize the
sum of the distance from each point to its closest cluster
center, while the former targets to minimize the sum of the
probability for each object being as a candidate regarding a
set of pivots. k-means clustering problem ismerely applied in
Euclidean spaces, while the optimal pivot selection problem
is applied in more general metric spaces with more complex
optimization objective function. Hence, we can reduce the
k-means clustering problem to our problem. ��

4.2.2 A heuristic approach to pivot selection

According to Theorem 4, answering the optimal pivot selec-
tion problem is NP-hard. We therefore propose a heuristic
approach to extracting the pivots greedily.

Before proceeding to present our heuristic approach, we
want to clarify that, although there exist some existing
approaches which aim to select good pivots, they cannot
be directly applied to solve our problem. The reasons are
twofold. First, some of them are particularly designed for
restricted Euclidean spaces [18,34] and cannot be extended
for generalmetric spaces. For example, k-means used in iDis-
tance works merely in Euclidean spaces. Second and more
importantly, all existing approaches select the pivots under
Theorem 1. In this way, objects that are distant to others are
often selected as pivots [18,23,28,34]. In this paper,we apply
Theorem 3 instead of Theorem 1 as the pruning rule. The-
oretically, we aim to obtain a minimum |pq , q| so that UBi
for each partition can be minimized. That is, we aim to select
the pivots P so that ∀r ∈ R, ∃p ∈ P, r is close to p. Due to
the above two reasons, we propose a new heuristic approach
to selecting pivots.

In order to serve as a generic solution that is indepen-
dent of a specific application domain, we make the following
assumption:

– P ⊂ (R ∪ Q).

Our pivot selection approach is motivated by the following
observation:

Observation 1 Given a query q, if there exists a pivot pi ∈ P

with q = pi , then the upper bound U Bj of the search range
for each partition PR

j is minimized, which is 〈 j, θ〉.
Example 4 Consider data set R is a collection of strings and
edit distance is used as the similarity function. Suppose we
have select three pivots: “Robert Morris,” “James Dean,” and
“Michael Morris.” Let query q and threshold θ be “Robert
Morris” and 1, respectively. First, we compute the distance
between each pivot and q. In this case, we have |p1, q| = 0,
|p2, q| = 11, and |p3, q| = 7. We then obtain the search
range for each partition, which is [〈1, 0〉, 〈1, 1〉] for PR

1 ,
[〈2, 10〉, 〈2, 1〉] for PR

2 , and [〈3, 6〉, 〈3, 1〉] for PR
3 . As the

latter two range searches are invalid, we then only set the
range search [〈1, 0〉, 〈1, 1〉] in the predicate. ��

Observation 1 inspires us to select the pivots so that ∀q ∈
Q, there exists a pivot which is exactly the same as q. In this
way, the upper bound of the search range for each partition
PR
i is minimized, making the maximum possibility for PR

i
be entirely pruned. Nevertheless, in many cases, like in high-
dimensional spaces, finding such a set of pivots is practically
impossible. Instead, we expect to find a set of pivots P ⊂
(R ∪ Q) so that ∀q ∈ Q, there exists a pivot pi , making the
distance |q, pi | as small as possible. For this reason, we relax
our problem statement of the pivot selection below:

Definition 4 (Approximate Pivot Selection) Given a query
load Q, a data set R, the problem of approximate pivot selec-
tion is to select L pivots, P ⊂ (R ∪ Q), so that the sum of
distances from ∀q ∈ Q to its closest pivot in P is minimized.

Theoretically, k-medoids [20] is the best solution to solve
the approximate pivot selection problem.Generally, applying
k-medoids to select pivots can be described as follows. At
step 1, we select L objects from (R ∪ Q) as P. At step 2,
∀q ∈ Q, we then assign q to its closest pivot in P. After
the assignment completes, we compute the sum of distances
from each q to its closest pivot in P. At step 3, ∀p ∈ P, ∀p′ ∈
(R∪ Q)−P, we swap p and p′, do the reassignment of each
q ∈ Q, and recompute the above sum. If the sum increases,
we then undo swap. At step 4, we repeat executing Step 3
until the sum does not decrease. Following the above steps to
select the pivots, the time complexity for each iteration (step
3) is O(L×(|R|+|Q|−L)×|Q|) [20]. Apparently, when the
size of Q or R is large, applying k-medoids to select pivots is
prohibitively expensive. Considering that the size of Q and
R could be large, we consequently propose a bipartite-based
approach that selects pivots with only one iteration.

123

842 W. Lu et al.

Fig. 7 Overview of the one-pass bipartite-based approach

In essence, our approach assigns a score to each object
in (R ∪ Q) and L objects with greatest scores are selected
as the pivots P. To select a set of effective pivots, the score
should be encoded properly so that ∀q ∈ Q, there exists a
pivot pi , making the distance |q, pi | as small as possible.
Figure 7 shows the rationale behind our approach. We take
Q, and Q ∪ R as two disjoint sets of vertices in a bipartite
graph. ∀q ∈ Q, we find its closest object r in (Q ∪ R) and
create an edge from q to r , denoted as q → r . Since r is
from set (Q ∪ R), there must exist an object r = q taking
the closest object to q, making the final pivot set P entirely
from Q. To cope with this problem, we slightly modify the
assignment such that ∀q ∈ Q, we find its second closest
object r in (Q ∪ R) by removing the same object with q and
create the edge q → r . We set the weight of edge q → r
to distance |q, r |. For example, in Fig. 7, we create an edge
from each query to its closest object and label the weight of
the edge using their distance.

In order to generate a tighter pq , a good pivot r from
(Q ∪ R) should capture the following two properties.

– r has as many incoming edges as possible, i.e., the num-
ber of queries taking r as their second closest object
should be as large as possible. LetQ(r) be the queries in
Q that take r as its second closet pivots, i.e., ∀q ∈ Q(r),
∀r ′ ∈ R, |r ′, q| ≥ |r, q|. For simplicity, we write
N (r) = |Q(r)|, and let Nmin = minr∈(Q∪R) N (r) and
Nmax = maxr∈(Q∪R) N (r).

– the overall distances from objects in Q(r) to r are as
small as possible. Let AVG(r) be the average distance

from q ∈ Q(r) to r , i.e., AVG(r) =
∑

q∈Q(r) |q,r |
N (r) .

Let AVGmin = minr∈(Q∪R) AVG(r), and AVGmax =
maxr∈(Q∪R) AVG(r).

We define the ranking score score(r) of r by properly
leveraging and normalizing N (r) and AVG(r) below:

score(r) = N (r) − Nmin

Nmax − Nmin
+

(

1 − AVG(r) − AVGmin

AVGmax − AVGmin

)

(12)

Note that if N (r) is 0, we simply set score(r) to 0. By
computing score(r)∀r ∈ (Q∪ R), we then extract L objects
with the maximum ranking scores as pivots.

Example 5 (Approximate Pivot Selection) Supposewe have
built the bipartite graph shown in Fig. 7 regarding a query
set Q and a data set R. First, ∀r ∈ R ∪ Q, we set N (r)
by counting the number of queries taking r as their second
closest object. In this way, we haveNmin = 0 andNmax = 4.
Second, ∀r ∈ R ∪ Q, we compute the averaged distance
from r to the queries that take r its second closest object.
Take r1 for instance. AVG(r1) = |q1,r1|+|q2,r1|

|N (r2)| = 1+3
2 = 2.

Similarly,we can compute AVG(r) for the remaining objects
where we have AVGmin = 0 and AVGmax = 3. Third,
∀r ∈ R ∪ Q, we compute score(r) based on Eq. 12. For
instance, score(r1) = 2−0

4−0 + (1 − 2−0
3−0) = 5/6. We list

N (r), AVG(r), score(r) for each r ∈ Q ∪ R in Fig. 7.
Finally, L objects with the largest scores are taken as pivots.

��

Details of the one-pass bipartite-based approach using
SQL in PostgreSQL are given below:

1: SELECT ID AS SID, A
INTO S

FROM Q

ORDER BY random()

LIMIT m;

2: SELECT ID AS TID, A
INTO T

FROM R

ORDER BY random()

LIMIT n;

3: ALTER TABLE S ADD pidDist iPair;

4: UPDATE S SET S.pidDist =(

SELECT (T.PID, DIST(S[A], T[A]))::iPair as pair
FROM T

ORDER BY pair.value

LIMIT 2,1);

5: SELECT pidDist.key as PID, count(*) AS N , 1.0 *

sum(pidDist.value)/count(*) AVG

INTO SC

FROM S

GROUP BY PID;

6: SELECT PID, 1.0*(N - Nmin)/(Nmax -Nmin) + 1 - 1.0 *

(AVG − AVGmin)/(AVGmax − AVGmin) AS score

INTO RANKING

FROM SC

WHERE N > 0

ORDER BY score DESC

LIMIT L;

7: SELECT PID, A
INTO PTable

FROM T, RANKING

WHERE ranking.PID = T.PID;

123

MSQL: efficient similarity search in metric spaces using SQL 843

To achieve a good performance, we generate two samples,
S for Q and T for R,5 respectively (Line 1–2). We then take
S as the query load, T as the superset of selected pivots,
and extract L pivots from T (Line 3–6). To do this, for each
query q ∈ S, we determine its second closest object from
among the objects in T and maintain the information in an
additional column pidDist (Line 3–4). We compute N (r)
and AVG(r) for each r ∈ T and maintain the intermediate
results in a temporary table SC (Line 5). Finally, we compute
the ranking score of each object in table T and select the L
objects with largest scores as the pivots P (Line 5–7). For
ease of illustration, we list the main steps as follows:

1. We scale down the computation by sampling (Q ∪ R).
Specifically, we generate a sample T from R ∪ Q and
another sample S from Q. We then take S as the query
load, T as the superset of the pivots;

2. We compute the ranking score for each object r ∈ T

based on Eq. 12 and the L objects with greatest ranking
scores will be selected as the pivots P .

The time complexity of using this heuristic approach to
selecting the pivots is O(|S| ∗ |T| ∗�+|P| ∗ log(|S|))where
� is the averaged distance computation cost regarding R.
In this paper, we implicitly assume that the size of the data
set R is fairly large, and hence extracting effective pivots
from R is practical. This assumption is reasonable because
if |R| is small, it is anyway unnecessary to build an index for
similarity queries.
Discussion over the query distributions In reality, all existing
approaches to selecting pivots make an implicit [18,25,34]
or explicit [23,28] assumption: queries follow the same dis-
tribution as the data set. For example, by making the above
assumption, iDistance and its variants partition the data sets
(queries) into clusters and extract the centers as the pivots.
On the contrary, if queries do not follow the same distri-
bution as the data set and in extreme cases that queries are
all far away to the data set, then applying k-means algo-
rithm to the original data set is not a good pivot selection
approach since pivots are expected to be close to queries.
While in our paper, we generalize the query distribution as
any discrete distribution, our approach is adaptive to select
pivots as long as the query distribution is given aforehand.
Initially, when the query load is not available, we assume that
queries follow the same distribution as the data set. We then
select |P| using the above-presented one-pass bipartite-based
approach. It is worth mentioning that the query performance
can be degraded when the query distribution changes. To
address this issue, we propose an incremental pivot update
mechanism described below:

5 An alternative of T extraction is first to union R and Q, and then do
the random extraction.

1. Likewise,we generate a sampleT from R∪Q and another
sample S from Q.

2. We then refine P using objects in T incrementally. Under
the new query load, we compute score(p) ∀p ∈ P, and
sort pivots in P based on the ascending order of their
scores. ∀r ∈ T, we compute score(r) as well. We sort
objects in T but based on the descending order of their
scores. Next, we incrementally replace pi ∈ P using
ri ∈ T if score(ri) > score(pi), where i ∈ [1, |P|].
Considering that it is computational expensive to repar-
tition the data set if too many pivots are changed, an
alternative is to update pivots by setting a percentage.

3. Finally, we re-assign objects in the obsolete partitions,
i.e., partitions whose corresponding pivots are replaced,
and update their signatures accordingly.

Besides, when the number of records in R changes by a
certain percentage (e.g., the number of records in R increases
by 10%), it is also necessary to invoke an incremental pivot
updatemechanism. In this case,we can introducemore pivots
in order to reduce the number of candidates. Specifically,
we run the proposed heuristic approach to selecting an extra
set of pivots from the newly added records, repartition the
records, and update their signatures accordingly.

To verify the effectiveness of our incremental pivot update
mechanism, we conduct the evaluation in Sect. 5.2.4.

5 Experiments

In this section, we first describe the configurations of our
experiments, including evaluation data sets, similarity func-
tions, methods, and performance metrics. We then study
the key parameters that potentially affect the performance
of MSQL and compare MSQL with the state-of-the-art
approaches.

5.1 Experimental setup

Data sets and similarity functionsWe evaluate the query per-
formance over 6 real data sets belonging to the following
three application domains:

– Spatial databases We use 2 spatial data sets. Open-
StreetMap6 is a world-wide geographic data set that
collects a multitude of points of interest, buildings, nat-
ural features and land-use information. Forest7 predicts
forest cover types from cartographic variables. We use
L1 and L2 as the similarity functions and set L1 as the
default function.

6 https://www.openstreetmap.org/.
7 http://archive.ics.uci.edu/ml/datasets/Covertype.

123

https://www.openstreetmap.org/
http://archive.ics.uci.edu/ml/datasets/Covertype

844 W. Lu et al.

– Text retrievalWe use 3 string data sets, including Author,
Actor, and Movie. Author data set consists of author
names extracted from DBLP.8 Actor and Movie data sets
consist of actor names and movie titles extracted from
IMDB.9 We use edit distance, Jaccard, Cosine as the sim-
ilarity functions.

– DNA sequence Uniprot data set consists of protein
sequences in flat text format.10 We use edit distance as
the similarity function.

Table 5 shows the detailed statistics of the data sets. It
can be seen that for string data sets the cardinality ranges
from 373,969 to 3,798,125. Note that we have removed
duplicates from the data set in order to eliminate the fac-
tors that may potentially affect the analysis of our methods.
The averaged string length of the three string data sets is
15.04, 14.46, and 18.74, respectively, while the variance of
them is only 3.34, 3.86, and 9.54, respectively. This observa-
tion presents the distribution of string length of the three data
sets is fairly dense. On the contrary, the DNA sequences in
Uniprot has large averaged sequence length as well as large
variance, i.e., the distribution of sequence length ofUniprot is
sparse.
Comparative approaches We compare MSQL with the fol-
lowing state-of-the-art approaches:

– Reference-based approaches In this paper, our objective
is to propose a solution that is generic and portable across
both open source and commercial RDBMS. However,
as discussed in Sect. 2.3, fully integrating reference-
based approaches as a generic and portable solution into
RDBMS is infeasible. Instead, we abstract the core tech-
niques from them and propose the baseline approach and
the pivot selection methods are listed in Table 2.

– Native solutions There exist a large number of native
solutions for processing similarity queries. For sim-
plicity, we select some representatives that are widely
used or recently published. There are PBI, Bed -tree, and
Flamingo for text spaces, iDistance for Euclidean spaces,
SPB-tree, M-tree for metric spaces. We do not plot the
results of any comparative approach if it fails to return
the results in an acceptable time or I/O times.

– SQL-based solutions GiST [16] is a built-in index in
PostgreSQL, and is well recognized as a generalized
index structure supporting an extensible set of queries
and data types. By default, GiST is used to imple-
ment R-tree, supporting spatial queries over Euclidean
spaces in PostgreSQL. For ease of illustration, we use
notation GiST-RTree instead of GiST. z-kNN [31],

8 http://www.informatik.uni-trier.de.
9 http://www.imdb.com.
10 http://www.uniprot.org. Ta

bl
e
5

St
at
is
tic

s
of

us
ed

da
ta
se
ts

D
at
a
se
t

Si
m
ila

ri
ty

C
ar
di
na
lit
y

Si
ze

(M
B
)

M
in
.

M
ax
.

A
vg

.
V
ar
.

#
of

T
hr
es
ho

ld
θ

Fu
nc
tio

n
L
en

L
en

L
en

D
im

s

A
ct
or

E
di
t
di
st
an

ce
Ja
cc
ar
d,
C
os
in
e

1,
21
3,
29
0

28
1

72
15
.0
4

3.
34

/
0,
1,
2,
3,
4

A
ut
ho
r

E
di
td

is
ta
nc
e

3,
79
8,
12
5

89
4

47
14
.4
6

3.
86

/
0,
1,
2,
3,
4

M
ov
ie

E
di
td

is
ta
nc
e

37
3,
96
9

9.
9

1
23
9

18
.7
4

9.
54

/
0,
1,
2,
3,
4,
5,
6

O
pe
nS

tr
ee
tM

ap
L
1,
L
2

10
0,
00
0,
00
0

27
1

/
/

/
/

2
0,
0.
01
,0
.0
2,
0.
04
,0
.0
8,
0.
1,
0.
2

Fo
re
st

L
1,
L
2

58
1,
01
2

26
3

/
/

/
/

10
10
0,
20
0,
30
0,
40
0,
50
0,
60
0,
10
00

U
ni
pr
ot

E
di
td

is
ta
nc
e

50
8,
03
8

17
0

2
19
92

34
1

25
1.
05

/
0,
2,
4,
8,
16

123

http://www.informatik.uni-trier.de
http://www.imdb.com
http://www.uniprot.org

MSQL: efficient similarity search in metric spaces using SQL 845

Table 6 Native and SQL-based
solutions to be compared

Euclidean spaces Text spaces Metric spaces SQL-based

GiST-RTree
√ √

z-kNN[31]
√ √

iDistance[18]
√

Text-SQL[15]
√ √

PBI[23]
√

Bed -tree[36]
√

Flamingo[4]
√

SPB-tree[8]
√ √ √

M-Tree[9]
√ √ √

MSQL
√ √ √ √

originally designed for processing k nearest neighbor
queries over Euclidean spaces using SQL, is extended
for processing similarity queries over Euclidean spaces.
Text-SQL [15] is the only known method to process
string similarity search under edit distance metric using
SQL.

Table 6 surveys native solutions and SQL-based solutions.
Note that MSQL is the only SQL-based solution to pro-
cess similarity queries in metric spaces. All source code
of comparative approaches has been generously provided
by the authors or downloaded from the home pages of the
authors. We evaluate their performance in terms of aver-
age elapsed time, average candidate set size and average
I/O times by repeating each experiment for five times.
We randomly select 100 query objects from each data set
and compare the average elapsed time. We list the thresh-
olds that are commonly set in existing work across various
data sets in Table 5; we use the threshold highlighted in
bold as default in the experiments. All experiments are
conducted on a PC with Intel E5620 2.4GHz of CPU,
8GB of memory, and CentOS 5.5 operating system. All
experiments of GiST-RTree, z-kNN, Text-SQL, MSQL are
executed in PostgreSQL 9.4.5. We use default parameters in
PostgreSQL, of which each page size is set to 8192B and
the number of shared buffers in the buffer pool is set to
1000 (Fig. 8).

5.2 Evaluation of MSQL

We evaluate the effectiveness of the new pruning rule and
our pivot selection strategy, compare MSQL with reference-
based approaches in terms of the performance of query
processing and data maintenance, and analyze the index con-
struction time. We leave the number of pivots as a tuning
parameter, which varies in {500, 1000, 2000, 4000, 8000}
for Actor, Author, Movie and OpenStreetMap data sets,
{100, 200, 300,400, 500} for Forest data set, and
{10, 25, 50, 100, 200} for Uniprot data set.

5.2.1 Effect of pruning rules and pivot selection

We study the performance of MSQL under Theorem 1 (a.b.a
T1) and Theorem 3 (a.b.a. T3). Besides the pivot selection
strategies listed in Table 2, we also use the Heuristic strat-
egy that is proposed in Sect. 4.2.2 and k-medoids clustering
method (resp. k-mean) to select the pivots. ForHeuristic, k-
mean, k-medoids, MaxProb andMaxVar, we do sampling
by randomly selecting 1000 objects as Q and 2000 objects
as T in Uniprot and 10,000 objects as Q and 20,000 objects
as T in each of remaining data sets.

We first plot the number of candidates in Fig. 9a–c.
When the number of pivots increases, the candidate set size
decreasesmonotonouslywhile there is a clear trend of dimin-
ishing gains. Because Theorem 3 produces tighter search
ranges than Theorem 1, as we can see,T3 +Random always
generates less number of candidates than T1 + Random.
Besides, because it is able to select better quality of pivots,
the number of candidates using T3 + Heuristic is less than
that using T3 + Random by a factor ranging from 31 to 46%
when |P| is small. However, there is a clear trend of dimin-
ishing gains when |P| increases. The reason, as explained in
Sect. 4, is that while there are sufficiently many pivots, it is
likely that for each query, we can find a close pivot in both
T3 +Heuristic andT3 +Random, leading to a similar prun-
ing power. Interestingly, in most cases, T3 + MaxProb and
T3 + MaxVar even generate larger number of candidates
than T3 + Random and T3 + Heuristic. As discussed in
Sect. 2.2, the cost models of selecting the pivots in MaxProb
and MaxVar are under T1. Often, as pointed out in [23,28],
objects are typically assigned to a distant pivot so that the
query processing is optimized. While in MSQL, according
to Theorem 3, we expect to find a pivot with the minimum
distance to q, for this reason,T3 +MaxProb andT3 +Max-
Var lead to larger search ranges thanT3 +Random andT3 +
Heuristic. k-means and k-medoids generate slightly smaller
number of candidates than T3 + Heuristic, but the benefit
drops smoothly when |P| increases. k-medoids only work in
Uniprot (the sample is small), and it fails to select pivots in
other data sets with an acceptable time.

123

846 W. Lu et al.

0

1

2

3

4

 25 50 100 200 300 400

of

 c
an

di
da

te
s

(x
10

3)

of pivots

T1 + Random
T3 + Random
T3 + Heuristic
T3 + MaxProb

T3 + k-mean

0

5

10

15

20

25

30

0.5 1 2 3 4 5 6 7 8

of

 c
an

di
da

te
s

(x
10

4)

of pivots

T1 + Random
T3 + Random
T3 + Heuristic
T3 + MaxProb

T3 + MaxVar

0

4

8

12

16

20

24

10 25 50 100 200

of

 c
an

di
da

te
s

(x
10

3)

of pivots

T1 + Random
T3 + Random
T3 + Heuristic
T3 + MaxProb

T3 + MaxVar
T3 + k-medoids

 5

 10

 15

 25 50 100 200 300 400

of

 I/
O

s

of pivots

 20

 30

 40

 50

 60

0.5 1 2 3 4 5 6 7 8

of

 I/
O

s

of pivots

 40

 80

 120

 160

 200

 240

 280

10 25 50 100 200

of

 I/
O

s

of pivots

 0

 2

 4

 6

 8

 25 50 100 200 300 400

R
un

ni
ng

 ti
m

e
(m

s)

of pivots

40

80

120

160

200

0.5 1 2 3 4 5 6 7 8

R
un

ni
ng

 ti
m

e
(m

s)

of pivots

 0

 50

 100

 150

 200

 250

 300

 10 25 50 75 100 125 150 175 200

R
un

ni
ng

 ti
m

e
(x

10
2)(

m
s)

of pivots

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Effect of pivot selection strategies a Forest and candidate size b Actor and candidate size c Uniprot and candidate size d Forest and I/Os e
Actor and I/Os f Uniprot and I/Os g forest and query time h Actor and query time i Uniprot and query time

We then analyze the I/O cost and plot the results in Fig. 9d–
f. As we can see, T3 + k-means, T3 + k-medoids and T3
+ Heuristic generally consume the minimum I/O cost, fol-
lowed by T3 + Random, T3 + MaxProb, T3 + MaxVar
and T1 + Random. In MSQL, the I/O cost depends on the
number of pages that the candidates reside in. Often, a larger
number of candidates lead to a more expensive I/O cost (see
Fig. 9d, e). But in some cases, if the candidates are scattered
across quite a more different set of pages, these candidates
will consume more expensive I/O cost (see Fig. 9f).

Finally, we study the running time and plot the results in
Fig. 9g–i. We make two observations. First, the trend of the
running time generally follows that of the number of candi-
dates as well as the number of I/Os. That is, T3 + k-means,
T3 + k-medoids and T3 + Heuristic perform the best, fol-

lowed byT3 +Random,T3 +MaxProb,T3 +MaxVar and
T1+Random. Second,when the number of pivots varies, the
running time first decreases, but then increases after the num-
ber of pivots exceeds a certain threshold, which is 1000 for
Actor, 50 for Forest, and 10 for Uniprot, respectively. This is
due to the fact that the running time inMSQLmainly consists
of three parts: (1) distance computation cost of pivots to the
query, (2) I/O cost of loading candidates from the local disk to
main memory, and (3) verification cost of candidates to sim-
ilar objects. In our case, Uniprot takes the most expensive
distance computation cost, followed by Actor and Forest. By
increasing the number of pivots, the cost of distance compu-
tation increases linearly. On the contrary, using an increasing
number of pivots leads to a less number of candidates. With-
out loss of generality, by introducing a new pivot p, let DC

123

MSQL: efficient similarity search in metric spaces using SQL 847

0

1

2

3

4

 25 50 100 200 300 400

of

 c
an

di
da

te
s

(x
10

3)

of pivots

Baseline
Join

MSQL

0

5

10

15

20

25

30

0.5 1 2 3 4 5 6 7 8

of

 c
an

di
da

te
s

(x
10

4)

of pivots (x103)

Baseline
Join

MSQL

0

3

6

9

12

15

50 75 100 125 150 175 200

of

 c
an

di
da

te
s

(x
10

3)

of pivots

Baseline
Join

MSQL

 5

 10

 15

 25 50 100 200 300 400

of

 I/
O

s

of pivots

Baseline
Join

MSQL

 20

 30

 40

 50

 60

 70

0.5 1 2 3 4 5 6 7 8

of

 I/
O

s

of pivots (x103)

Baseline
Join

MSQL

 80

 120

 160

 200

 240

0 25 50 75 100 125 150 175 200

of

 I/
O

s

of pivots

Baseline
Join

MSQL

 0

 2

 4

 6

 8

 10

 25 50 100 200 300 400

R
un

ni
ng

 ti
m

e(
m

s)

of pivots

Baseline
Join

MSQL

 40

 100

 500

 1000

 2000

0.5 1 2 3 4 5 6 7 8

R
un

ni
ng

 ti
m

e
(m

s)

of pivots (x103)

Baseline
Join

MSQL

 0

 50

 100

 150

 200

 250

 300

 350

0 25 50 75 100 125 150 175 200

R
un

ni
ng

 ti
m

e(
m

s)

of pivots

Baseline
Join

MSQL

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Comparing MSQL with reference-based approaches using SQL a Forest and candidate size b Actor and candidate size c Uniprot and
candidate size d Forest and I/Os e Actor and I/Os f Uniprot and I/Os g Forest and query time h Actor and query time i Uniprot and query time

be the extra distance computation cost, δ be the objects that
is filtered out merely based on p, and VC be the saving cost
that verifies whether r ∈ δ is similar to q or not. As shown
in Fig. 9a–c, there is a clear trend of diminishing gain of
candidate reduction when |P| increases, while DC remains
almost invariant. For this reason, the running timedropswhen
VC > DC , and increases when DC > VC . Because VC in
Uniprot is fairly expensive, the optimal number of pivots is
the smallest among six real data sets.

Similar experiments are conducted over the remaining
data sets, and we set |P| = 1000 for Author, Movie, Open-
StreetMap. Besides, due to applicability and performance
issue, we set MSQL under T3 + Heuristic in the remaining
experiments.

5.2.2 Comparison with reference-based approaches

We compare MSQL with the baseline approach (a.b.a Base-
line), shown in Sect. 3.4.1, and the Join-based approach
(a.b.a. Join), shown in Sect. 3.4.2. Recall that Baseline and
Join adopt the pruning rules in T1, while MSQL adopts the
pruning rule in Theorem 3.

The results are plotted in Fig. 9. First, Baseline and
Join generate the same number of candidates and almost
the same number of I/Os, while Join performs faster than
Baseline, and the superiority of Join becomes more obvi-
ous when the number of pivots increases. The reason, as
discussed before, is twofold. On the one hand, selecting
the best query plan in the query optimizer for Baseline is
costly when the number of predicates is large. On the other

123

848 W. Lu et al.

 0

 50

 100

 150

 200

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0
 20
 40
 60
 80

 100
 120
 140
 160

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0

 10

 20

 30

 40

 50

 1 2 5 8 10

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 100
 200
 300
 400
 500
 600
 700
 800

 1 2 5 8 10

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0

 100

 200

 300

 400

 500

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 5 10 20 30

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

 200

 400

 600

 800

 1000

 1200

 1 2 5 8 10

R
un

ni
ng

 ti
m

e
(s

)

of affected records (x104)

Baseline
MSQL

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Effect of data manipulations a Actor and data deletion b Forest and data deletion c Uniprot and data deletion d Actor and data insertion e
Forest and data insertion f Uniprot and data insertion g Actor and data update h Forest and data update i Uniprot and data update

hand, when the number of predicates is large, the query
optimizer in Baseline resorts to table scan instead of index
seeks, nullifying the effect of index seek (see Fig. 9h). Sec-
ond, the number of candidates in MSQL is reduced by up
to a factor of 87.5% in comparison with that in Baseline
and MSQL always generates less number of candidates than
Baseline (Join) since Theorem 3 produces tighter search
ranges than Theorem 1 as well as effective pivots are used.
Third, the I/O cost is reduced significantly by MSQL in
comparison with Baseline due to the effectiveness of the
pruning rule, i.e., Theorem 3. Fourth, MSQL runs faster than
Join and Baseline due to the less number of candidates and
I/Os.

5.2.3 Data maintenance

We compare MSQL with Baseline in terms of data mainte-
nance cost. Note that it is necessary to maintain Si .min and
Si .max in PTable, while MSQL does not.

We first study the performance of handling data inser-
tion, update, and deletion. Figure 10 plots the results over
Actor, Forest, and Uniprot by inserting, updating, and delet-
ing the number of records from 10,000 to 300,000 for Actor
and Forest and from 10,000 to 100,000 for Uniprot. As we
can see, for data deletion, MSQL performs up to two orders
of magnitude faster than Baseline. The reason is that Base-
line needs to examine Si .min and Si .max by computing

123

MSQL: efficient similarity search in metric spaces using SQL 849

0

4

8

12

 0 100 200 300 400 500

of

 c
an

di
da

te
s(

x1
04)

of inserted records per second

Baseline
MSQL

 100

 105

 110

 115

 120

 125

 130

 0 100 200 300 400 500

of

 I/
O

s

of inserted records per second

Baseline
MSQL

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

R
un

ni
ng

 ti
m

e
(m

s)

of inserted records per second

Baseline
MSQL

(a) (b) (c)

Fig. 11 Concurrent query processing a # of candidates b # of IOs c running time

|r, pi | (suppose r belongs to PR
i), and replace it with the

new Si .min and Si .max if necessary. While MSQL does
not necessary conduct this examination and replacement,
thus such computation cost can be completely saved. For
data insertion and data update, as MSQL also needs to com-
pute the signatures of new objects, the benefit of MSQL in
these two cases is not as good as that in data deletion. But
still, MSQL performs 1.1–8× faster than Baseline. From
Fig. 10d–i, we observe that the smaller the signature com-
putation cost is, the more the benefit of MSQL will gain.
The reason is that, in our experiments, the sequence space
takes the most expensive signature computation cost, fol-
lowed by the text space and Euclidean space. When the
signature computation cost dominates the index update cost,
the performance of MSQL is close to that of Baseline (see
Fig. 10i).

MSQL supports concurrent query processing that other
native solutions cannot. For this reason, we study the query
performance by issuing continuous similarity queries as
we simultaneously insert the number of records (from 0
to 500 per second) into the original relation. We plot the
result in Fig. 11 over Actor data set. As we can see,
compared with Baseline, although MSQL produces less
than half the number of candidates as well as <20%
I/O cost, MSQL performs 3X faster than the baseline
approach. The reason, as discussed before, is that MSQL
eliminates extra maintenance cost of Si .min and Si .max
and concurrent locking issue over PTable. Besides, when
the frequency of data insertion increases, compared with
Baseline, there is a clear trend of increasing grain using
MSQL.

5.2.4 Incremental pivot update

In this section, we evaluate the effectiveness of our proposed
incremental pivot update mechanism over Author and Forest
data sets.

We first study the effect when the query load varies.
In this setting, we generate two query sets, in which the

Table 7 Incremental pivot update for dynamic query load

Data set # of pivots # of replaced
pivots

of reduced
candidates (%)

Author 1000 814 13
Forest 50 41 8

Table 8 Incremental pivot update for dynamic data sets

40% 60% 80% 100%

Author Time 0 0.14 0.21 0.35
I/O 0 0.08 0.24 0.33
Candidates 0 0.21 0.28 0.36

Forest Time 0 0.10 0.22 0.30
I/O 0 0.06 0.12 0.16
Candidates 0 0.19 0.28 0.35

first is randomly extracted from the first 50% of each data
set, and the other is randomly extracted from whose data
set. The results are given in Table 7. As we can see, for
Author, among 1000 pivots, 814 pivots are replaced in order
to achieve the minimum candidate set size regarding the new
query load, and the number of candidates under the refined
pivots is reduced by a factor of 13%. For Forest, among
50 pivots, 41 pivots are replaced and the number of can-
didates under the refined pivots is reduced by a factor of 8%
(Table 8).

We then investigate the effect when the data set changes.
In this setting, we first randomly extract 40% of objects in
each data set, and select 40% of total pivots. We then run our
heuristic approach to selecting extra 20% pivots when 20%
of objects from remaining data set are added. We compare
the query performance under the dynamic pivots and static
pivots (the pivot set is fixed when the data set changes) and
show the benefit that is saved by our proposed incremental
pivot update mechanism. As we can see, the query time, the
number of I/Os, and the number of candidates can be reduced
by a factor up to 35, 33, 36% respectively when 40, 60, 80,
and 100% of objects in the data sets are used.

123

850 W. Lu et al.

 0

 2000

 4000

 6000

 8000

 10000

Openstreetmap Author Actor Movie Uniprot Forest

R
un

ni
ng

 ti
m

e
(s

)

Datasets

Pivot selection
Signature generation

Index creation

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Openstreetmap Author Actor Movie Uniprot Forest

In
de

x
si

ze
 /

da
ta

 s
iz

e

Datasets

ratio

(a)

(b)

Fig. 12 Index building a index construction time b index size and data
size

5.2.5 Index building

Figure 12a shows the index construction time over six real
data sets. Generally, following our index generation scheme,
the index construction time consists of three parts: (1) pivot
selection, (2) signature generation, and (3) B+-tree construc-
tion. As discussed in Sect. 4, the time complexity of pivot
selection is O(|S| ∗ |T| ∗ � + |P| ∗ log(|S|)). For the data
sets except Uniprot, as we use the same size of |S| and |T|,
the running time of pivot selection phase relies on �, the
averaged distance computation cost (Note that |P| ∗ log(|S|
is typically much less than |S| ∗ |T| ∗ �). That is the reason
why in Fig. 12a, regarding the pivot selection phase, Open-
StreetMap (OSM for short in the figure) takes the minimum
running time, followed by Forest, Author, Actor, Movie,
and Uniprot. For signature generation phase, its time com-
plexity is O(|P| ∗ |R| ∗ �) and hence the running time of
this phase relies on the pivot size |P|, data set size |R| and
the averaged distance computation cost �. From Fig. 12a,
we can observe that OpenStreetMap takes maximum signa-
ture generation time, followed by Author, Actor, Forest. The
time complexity of B+-tree construction is O(|R|log|R|),
and hence Movie takes the minimum running time of this

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (θ * 10-2)

z-kNN
iDistance

GiST-RTree
MSQL

0

1

2

3

4

5

6

 0 1 2 3 4 5 6 7 8 9 10

of

 I/
O

s
(*

10
3)

Threshold (θ * 10-2)

z-kNN
iDistance

GiST-RTree
MSQL

0

25

50

75

100

 0 1 2 3 4 5 6 7 8 9 10

of

 c
an

di
da

te
s

(*
10

3)

Threshold (θ * 10-2)

z-kNN
iDistance

MSQL
Results

 0
 100
 200
 300
 400
 500
 600
 700
 800

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(m

s
*

10
2)

Threshold (θ * 102)

z-kNN
iDistance

M-Tree

SPB-tree
MSQL

GiST-RTree

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

of

 I/
O

s

Threshold (θ * 102)

z-kNN
iDistance

M-Tree
SPB-tree

MSQL
GiST-RTree 0

3

6

9

12

15

18

1 2 3 4 5 6 7 8 9 10

of

 c
an

di
da

te
s

(*
 1

04)

Threshold (θ * 102)

z-kNN
iDistance

M-Tree
SPB-tree

MSQL
Results

(a) (b) (c)

(d) (e) (f)

Fig. 13 Similarity search in Euclidean spaces a OpenStreetMap and query time b OpenStreetMap and I/Os c OpenStreetMap and candidate size
d Forest and query time e Forest and I/Os f Forest and candidate size

123

MSQL: efficient similarity search in metric spaces using SQL 851

 1

 10

 100

 1000

 10000

0 1 2 3 4

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

 0

10

15

20

25

0 1 2 3 4

of

 I/
O

s
(*

10
3)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

0
2

4

6

8

10

12

0 1 2 3 4

of

 c
an

di
da

te
s

*
(1

05)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

Results

 1

 10

 100

 1000

 10000

0 1 2 3 4

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL 0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4

of

 I/
O

s
(*

10
4)

Threshold (θ)

TextSQL
PBI

Bed-tree

Flamingo
M-Tree
MSQL

 0

2

4

6

8

10

12

14

16

0 1 2 3 4

of

 c
an

di
da

te
s

(*
 1

05)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

Results

 0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

R
un

ni
ng

 ti
m

e
(*

10
3 m

s)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

0

0.5

1

2

3

4

0 1 2 3 4 5 6

of

 I/
O

s
(*

10
3)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

 0

5

10

15

20

25

30

35

40

0 1 2 3 4

of

 c
an

di
da

te
s

(*
10

4)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

M-Tree
MSQL

Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14 Similarity search in text spaces a Actor and query time b Actor and I/Os c Actor and candidate size d Author and query time e Author
and I/Os f Author and candidate size g Movie and query time h Movie and I/Os i Movie and candidate size

phase, followed byUniprot, Forest, Actor, Author, andOpen-
StreetMap. By taking these three parts into account, Uniprot
consumes the minimum index construction time, followed
by Forest, Movie, Actor, OpenStreetMap, Author. Although
it takes more than 1h to build the index in OpenStreetMap
(100,000,000 objects), we argue that existing RDBMS like
PostgreSQL 9.6 and its later versions11 start to support par-
allel execution of SQL statements, while considering the
process of building index inMSQL, it is able to performs this
parallelism by dividing the data set into multiple subsets, and
parallelizing the computation over each subset separately.

Figure 12b shows the ratio (index size / data size). As we
can see, the ratio ranges from 1.1 to 1.25 for OpenStreetMap,

11 https://www.postgresql.org/docs/9.6/static/release-9-6.html.

Author,Actor, andMovie since the averaged length of objects
is comparable to the size of signatures. While the averaged
length of objects ismuch larger than the size of signatures, we
observe that the ratio degrades from 0.17 to 0.6 for Uniprot
and Forest.

5.3 Comparison with existing approaches

We compare MSQL with SQL-based and native solutions
listed in Table 6 for Euclidean spaces, text spaces and
sequence spaces separately.

123

https://www.postgresql.org/docs/9.6/static/release-9-6.html

852 W. Lu et al.

5.3.1 Euclidean spaces

Figure 13 shows the query performance of comparingMSQL
with existing solutions using L2. Note that GiST-RTree
insides PostgreSQL integrates the candidate identification
phase and verification phase together. For this reason, we
do not plot the candidate set size of GiST-RTree. Instead, we
plot the size of final results.
• Comparison with SQL-based approaches In general,
MSQL performs the best, followed by GiST-RTree and z-
kNN. For z-kNN, it loses partial locality information by
mapping multi-dimensional point to one-dimensional value
and hence it generates much larger number of candidates
than both GiST-RTree and MSQL. GiST-RTree consumes
less number of I/Os, and runs faster thanMSQLwhen θ = 0.
Nevertheless, this is later reversed and the gain of using
MSQL is enhanced as the threshold varies. MSQL runs up to
6X faster than GiST-RTree when θ = 0.1. GiST-RTree con-
sumes slightly less number of I/Os thanMSQL.As frequently
pointed out in existing literatures, GiST-RTree suffers from
so-called curse of dimensionality [12,13], and is only suit-
able for low-dimensional spaces, especially for the data with
2–4 dimensions. For this reason, over the high-dimensional
space (Forest), we find that MSQL runs 5.65–11.3× faster
than GiST-RTree and requests less number of I/Os by 1.7–
3.89×.
•Comparisonwith native solutions Interestingly,MSQLper-
forms the best in terms of CPU time, I/O cost, and candidate
set size. The reason is that, by selecting sufficiently many
pivots to split the data space into small cells, it is common
for MSQL to find a close pivot for each query, which helps
generate a tight upper bound of each search range. Due to
a larger number of candidates and I/Os, iDistance performs
slightly slower than MSQL. SPB-tree transforms the simi-
larity queries into range queries over L-dimensional spaces.
Apparently, L , the number of used pivots, cannot be too large;
otherwise, the similarity query problem is transformed into
range queries in high-dimensional spaces, which is widely
recognized as an intractable problem. Nevertheless, as dis-
cussed in our experiments, using hundreds or even thousands
of pivots can achieve the best query performance. Thus,
MSQL runs 8–58× faster than SPB-tree, and requests less
number of I/Os by two orders of magnitude. For the sake of
clarity, we do not show the number of candidates using SPB-
tree, which is one to two orders of magnitude larger than that
using MSQL.

5.3.2 Text spaces

Figure 14 shows the query performance of comparingMSQL
with existing solutions over Actor, Author, and Movie under
edit distance.

 1

 10

 100

 1000

 0.8 0.85 0.9 0.95 1

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (1 - θ)

TextSQL
MSQL

 1

 10

 100

 1000

 0.8 0.85 0.9 0.95 1

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (1 - θ)

TextSQL
MSQL

(a)

(b)

Fig. 15 Actor and Jaccard and Cosine a Jaccard and query time b
Cosine and query time

• Comparison with SQL-based approaches MSQL outper-
forms Text-SQL by two orders of magnitude in terms of
both query time and I/O cost, and the performance of MSQL
becomes even more substantial when θ varies. The reason is
that MSQL determines the candidates by merely examining
the signatures of objects located in a set of certain search
ranges. In contrast, Text-SQL determines the candidates by
issuing a complex quad-table join that involves in two rela-
tions with cardinality multiple times larger than that of R,
leading to a prohibitive increase of the join cost.
• Comparison with native solutions MSQL and native solu-
tions are comparable over all three data sets. In general,
MSQL runs faster up to 2.5× faster than Bed -tree, faster
up to two order of magnitude than M-Tree, and slower up
to 1.1× than PBI. Compared with MSQL, Bed -tree and PBI
consume larger number of I/Os by one to two orders of mag-
nitude, and generate larger number of candidates. When the
threshold is small,MSQL runs slightly slower than Flamingo
which generates less number of candidates and requests less
number of candidates I/Os, while this is later reversed when
the threshold is relatively large.We observewhen the number
of candidates increases, the I/O cost is raised significantly in
Flamingo. The reason is that Flamingo identifies objects by
probing the inverted index and the candidates to be verified
are scattered across different inverted lists, making the I/O

123

MSQL: efficient similarity search in metric spaces using SQL 853

 0

 30

 60

 90

 120

 150

0 2 4 8 16

R
un

ni
ng

 ti
m

e
(m

s)

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

MSQL

 1

 10

 100

 1000

 10000

0 2 4 8 16

of

 I/
O

s

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

MSQL
 0

 10000

 20000

 30000

 40000

 50000

 60000

0 2 4 8 16

of

 c
an

di
da

te
s

Threshold (θ)

TextSQL
PBI

Bed-tree
Flamingo

MSQL
Results

(a) (b) (c)

Fig. 16 Similarity search in DNA sequence a Uniprot and query time b Uniprot and I/Os c Uniprot and candidate size

cost prohibitively expensive when the number of candidates
is large. Note that in some cases, even Flamingo generates
less number of candidates than MSQL and PBI, but still,
MSQL and PBI run faster than Flamingo. The reason is that
Flamingo takes much more expensive time to figure out the
candidates (see [23]).

To measure the similarity between two strings under Jac-
card and Cosine, we split each string into a sequence of
Q-grams and measure the string similarity based on their
Q-grams. We evaluate MSQL with Text-SQL over Actor
and plot the experimental results in Fig. 15. Although Text-
SQL cannot directly support similarity queries under Jaccard
and Cosine, we modify Text-SQL to support both two sim-
ilarity measures by incorporating the prefix-based pruning
techniques [26]. Due to the same reason discussed above,
again, MSQL runs faster than Text-SQL by up to two orders
of magnitudes. We do not show the I/O cost and candidate
set size due to space limitations, but they follow the same
general trend as under the edit distance measure.

5.3.3 Sequence spaces

Figure 16 shows the query performance over Uniprot.
• Comparison with SQL-based approaches As in sequence
spaces, MSQL performs significantly faster than Text-SQL;
in some cases, Text-SQL even fails to complete the query
within an acceptable time. As explained above, the reason
is that the average length of sequence in Uniprot is 341
(Table 5), and R′ enlarges the records in Uniprot by more
than 300 times, leading to a prohibitive increase of join cost,
whereas MSQL still processes similarity queries by exam-
ining the objects with signatures located in a set of certain
search ranges only.
• Comparison with native solutions MSQL and native solu-
tions are comparable in sequence spaces. In particular, when
the threshold is very small (in our case θ ≤ 2), Flamingo
shows its advantages. When the threshold varies, as in
the sequence space, the candidates generated in Flamingo

increase sharply, resulting in a comparable performance with
MSQL and PBI.

To summarize, inmost cases,MSQLoutperforms all exist-
ing SQL-based solutions in Euclidean, text, and sequence
spaces significantly. As a systematic solution,MSQL is com-
parable to existing native solutions in terms of both CPU time
and candidate set size. More importantly, based on the ben-
efits brought by RDBMS and its properties, MSQL requires
I/Os than existing native solutions by up to two orders of
magnitude.

6 Conclusion

In this paper, we propose MSQL, an efficient metric space
similarity search solution using SQL. MSQL enables users
to submit similarity search queries in arbitrary metric spaces
using simple SQL statements. It leverages the optimizations
and features of existing RDBMS and explores various query
optimization techniques to significantly reduce bothCPUand
I/O cost. Extensive experiments on PostgreSQL demonstrate
the efficiency of MSQL, which performs up to two orders of
magnitude faster than existing SQL-based techniques. Com-
pared with native solutions, MSQL is comparable in text and
sequence spaces, and superior in Euclidean spaces. Further-
more, as an SQL-based solution, MSQL can be deployed
easily to existing RDMBS as well.

Acknowledgements Wewould like to thank the anonymous reviewers
for their helpful and insightful comments. This work was in part sup-
ported by theNationalNatural Science Foundation ofChina (61502504,
61732014), and the Fundamental Research Funds for the Central Uni-
versities, the Research Funds of Renmin University of China under
Grant No. 15XNLF09.

References

1. Apers, P.M.G., Blanken, H.M., Houtsma,M.A.W. (eds.): Multime-
dia Databases in Perspective. Springer, Berlin (1997)

123

854 W. Lu et al.

2. Aronovich, L., Spiegler, I.: Cm-tree: a dynamic clustered index
for similarity search in metric databases. Data Knowl. Eng. 63(3),
919–946 (2007)

3. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information
Retrieval. ACM Press/Addison-Wesley, New York (1999)

4. Behm, A., Ji, S., Li, C., Lu, J.: Space-constrained gram-based
indexing for efficient approximate string search. In: Proceedings
of the 25th International Conference on Data Engineering (ICDE),
March 29 – April 2, 2009, Shanghai, China, pp. 604–615 (2009).
doi:10.1109/ICDE.2009.32

5. Bozkaya, T., Özsoyoglu, Z.M.: Indexing large metric spaces for
similarity search queries. ACM Trans. Database Syst. 24(3), 361–
404 (1999)

6. Brin, S.:Near neighbor search in largemetric spaces. In:VLDB’95,
Proceedings of 21th International Conference on Very Large Data
Bases, September 11–15, 1995, Zurich, Switzerland, pp. 574–584
(1995)

7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Search-
ing in metric spaces. ACMComput. Surv. (CSUR) 33(3), 273–321
(2001)

8. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient metric
indexing for similarity search. In: 31st (IEEE) InternationalConfer-
ence onData Engineering (ICDE),April 13–17, 2015, Seoul, South
Korea, pp. 591–602 (2015). doi:10.1109/ICDE.2015.7113317

9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access
method for similarity search in metric spaces. In: VLDB’97, Pro-
ceedings of 23rd International Conference on Very Large Data
Bases, August 25–29, 1997, Athens, Greece, pp. 426–435 (1997)

10. Dasgupta, S., Freund, Y.: Random projection trees for vector quan-
tization. IEEE Trans. Inf. Theory 55(7), 3229–3242 (2009)

11. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: distance
searching index for metric data sets. Multimed. Tools Appl. 21(1),
9–33 (2003)

12. Gao, J., Jagadish, H.V., Lu, W., Ooi, B.C.: DSH: data sensitive
hashing for high-dimensional k-nnsearch. In: International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22–27, pp. 1127–1138 (2014)

13. Gionis, A., Indyk, P.,Motwani, R.: Similarity search in high dimen-
sions via hashing. In: VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7–10, 1999,
Edinburgh, Scotland, UK, pp. 518–529 (1999)

14. Goldstein, J., Ramakrishnan, R.: Contrast plots and p-sphere trees:
space vs. time in nearest neighbour searches. In: Proceedings of
27th International Conference on Very Large Data Bases (VLDB),
September 11–14, 2001, Roma, Italy, pp. 429–440 (2000)

15. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukr-
ishnan, S., Srivastava, D.: Approximate string joins in a database
(almost) for free. In: Proceedings of 27th International Conference
onVeryLargeDataBases (VLDB), September 11–14, 2001,Roma,
Italy, pp. 491–500 (2001)

16. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search
trees for database systems. In:VLDB’95, Proceedings of 21th Inter-
national Conference on Very Large Data Bases, September 11–15,
1995, Zurich, Switzerland, pp. 562–573 (1995)

17. Hjaltason,G.R., Samet,H.: Index-driven similarity search inmetric
spaces. ACM Trans. Database Syst. 28(4), 517–580 (2003)

18. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: idistance:
an adaptive B+-tree based indexing method for nearest neighbor
search. ACM Trans. Database Syst. 30(2), 364–397 (2005)

19. Jr, C.T., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing
and visualization of metric data sets using slim-trees. IEEE Trans.
Knowl. Data Eng. 14(2), 244–260 (2002)

20. Kaufman, L., Rousseeuw, P.: Clustering bymeans of medoids. Sta-
tistical Data Analysis Based on the L1-Norm andRelatedMethods,
pp. 405–416 (1987)

21. Koudas, N., Marathe, A., Srivastava, D.: Flexible string matching
against large databases in practice. In: Proceedings of the Thirti-
eth International Conference on Very Large Data Bases (VLDB),
August 31 - September 3, 2004, Toronto, Canada, pp. 1078–1086
(2004)

22. Lin, K.-I., Jagadish, H.V., Faloutsos, C.: The TV-tree: an index
structure for high-dimensional data. VLDB J. 3(4), 517–542 (1994)

23. Lu, W., Du, X., Hadjieleftheriou, M., Ooi, B.C.: Efficiently sup-
porting edit distance based string similarity search using B+-trees.
IEEE Trans. Knowl. Data Eng. 26(12), 2983–2996 (2014)

24. Lu,W., Shen,Y., Chen, S., Ooi, B.C.: Efficient processing of k near-
est neighbor joins using mapreduce. PVLDB 5(10), 1016–1027
(2012)

25. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and
scalable solution for precise and approximate similarity search.
Inf. Syst. 36(4), 721–733 (2011)

26. Rong, C., Lu, W., Wang, X., Du, X., Chen, Y., Tung, A.K.H.: Effi-
cient and scalable processing of string similarity join. IEEE Trans.
Knowl. Data Eng. 25(10), 2217–2230 (2013)

27. Uhlmann, J.K.: Satisfying general proximity/similarity queries
with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)

28. Venkateswaran, J., Lachwani, D., Kahveci, T., Jermaine, C.M.:
Reference-based indexing of sequence databases. In: Proceed-
ings of the 32nd International Conference on Very Large Data
Bases (VLDB), September 12–15, 2006, Seoul, Korea, pp. 906–
917 (2006)

29. Waterman, M.S.: Introduction to Computational Biology—Maps,
Sequences, and Genomes: Interdisciplinary Statistics. CRC Press,
Boca Raton (1995)

30. Winkler, W.E.: The state of record linkage and current research
problems. Statistical Research Division, US Bureau of the Census
(1999)

31. Yao, B., Li, F., Kumar, P.: K nearest neighbor queries and knn-joins
in large relational databases (almost) for free. In: ICDE, pp. 4–15
(2010). doi:10.1109/ICDE.2010.5447837

32. Yianilos, P.N.: Data structures and algorithms for nearest neigh-
bor search in general metric spaces. In: Proceedings of the Fourth
Annual Symposium on Discrete Algorithms SODA, January 25–
27, 1993, Austin, Texas, pp. 311–321 (1993)

33. Yoshitaka, A., Ichikawa, T.: A survey on content-based retrieval
for multimedia databases. IEEE Trans. Knowl. Data Eng. 11(1),
81–93 (1999)

34. Yu, C., Ooi, B.C., Tan, K.-L., Jagadish, H.V.: Indexing the dis-
tance: an efficient method to knn processing. In: Proceedings of
27th International Conference on Very Large Data Bases (VLDB),
September 11–14, 2001, Roma, Italy, pp. 421–430 (2001)

35. Zhang, R., Kalnis, P., Ooi, B.C., Tan, K.-L.: Generalized mul-
tidimensional data mapping and query processing. ACM Trans.
Database Syst. 30(3), 661–697 (2005)

36. Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-
tree: an all-purpose index structure for string similarity search
based on edit distance. In: Proceedings of the International Con-
ference on Management of Data (SIGMOD), June 6–10, 2010,
Indianapolis, Indiana, USA, pp. 915–926 (2010). doi:10.1145/
1807167.1807266

123

http://dx.doi.org/10.1109/ICDE.2009.32
http://dx.doi.org/10.1109/ICDE.2015.7113317
http://dx.doi.org/10.1109/ICDE.2010.5447837
http://dx.doi.org/10.1145/1807167.1807266
http://dx.doi.org/10.1145/1807167.1807266

	MSQL: efficient similarity search in metric spaces using SQL
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 Reference-based partitioning paradigm
	2.3 Related work

	3 Query processing in MSQL
	3.1 An overview
	3.2 Index building
	3.2.1 Signature generation scheme
	3.2.2 B+-tree construction

	3.3 Data manipulation
	3.4 Query processing
	3.4.1 Baseline approach
	3.4.2 Join-based approach
	3.4.3 Discussion

	4 Query optimization
	4.1 Enhancing the filtering power with a new pruning rule
	4.2 Pivot selection
	4.2.1 Cost model
	4.2.2 A heuristic approach to pivot selection

	5 Experiments
	5.1 Experimental setup
	5.2 Evaluation of MSQL
	5.2.1 Effect of pruning rules and pivot selection
	5.2.2 Comparison with reference-based approaches
	5.2.3 Data maintenance
	5.2.4 Incremental pivot update
	5.2.5 Index building

	5.3 Comparison with existing approaches
	5.3.1 Euclidean spaces
	5.3.2 Text spaces
	5.3.3 Sequence spaces

	6 Conclusion
	Acknowledgements
	References

