
1

Fast Failure Recovery in Vertex-centric
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Abstract—There is a growing need for distributed graph processing systems to have many more compute nodes processing graph-
based Big Data applications. However, increasing the number of compute nodes inevitably raises the chance of node failures. Therefore,
provisioning an efficient failure recovery scheme is critical for distributed graph processing systems. Fueled by this need, we propose
a novel recovery scheme that aims to accelerate the recovery process by parallelizing the recomputation. In this recovery scheme,
once a failure occurs, on one hand, all recomputations to recover the failure are confined to subgraphs originally residing in the failed
compute nodes S̄; on the other hand, when the recovery starts, these subgraphs are reassigned to another set S of compute nodes,
and the recomputations over these subgraphs are parallelized using the compute nodes in S. While the computation cost can be
minimized when S includes all the compute nodes in the cluster, the communication cost may increase as a side effect. For this reason,
to minimize the recovery latency, we then develop a reassignment strategy, from these subgraphs to the replaced compute nodes, by
properly leveraging the computation and communication cost. We elaborate the integration of our recovery scheme into Giraph system,
a widely used graph processing system. The experimental results over a variety of real graph datasets demonstrate that our proposed
recovery scheme outperforms existing recovery methods by up to 30x on a cluster of 40 compute nodes.
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1 INTRODUCTION
Graphs capture complex relationships and data dependencies,
and are important to Big Data applications such as social
network analysis, spatio-temporal analysis and navigation, and
consumer analytics. In recent years, MapReduce has been
shown to be ineffective for handling graph data, and several
new systems such as Pregel [21], Pregel++ [27], Pregelix [10],
Giraph [1], GraphLab [12], [19], and Trinity [25] have been
recently proposed for scalable distributed graph processing.

With the explosion in graph size and increasing demand of
complex analytics, graph processing systems have to continu-
ously scale out by increasing the number of compute nodes, in
order to handle the workload. But scaling the number of nodes
results in two effects on the failure resilience of a system.
First, increasing the number of nodes will inevitably lead to
an increase in the number of failed nodes. Second, after a
failure, the progress of the entire system is halted until the
failure is recovered. Thus, a potentially large number of nodes
will become idle just because a small set of nodes have failed.
In order to scale out the performance continuously when the
number of nodes increases, it is becoming crucial to provision
the graph processing systems with the ability to handle the
failures effectively and efficiently.
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The design of failure recovery mechanisms in distributed
systems is a nontrivial task, as they have to cope with several
adversarial conditions. Node failures may occur at any time,
either during normal job execution, or during recovery period.
An effective recovery algorithm must be able to handle both
kinds of failures. Furthermore, the recovery algorithm must be
very efficient because the overhead of recovery can degrade
system performance significantly. To a certain extent, due to
the long recovery time, failures may occur repeatedly before
the system recovers from an initial failure. If so, the system
will go into an endless recovery loop without any progress
in execution. Finally, the system must cope with the failures
while maintaining the recovery mechanism transparent to user
applications. This implies that the recovery algorithm can only
rely on the computation model of the system, rather than any
computation logic applied for specific applications.

The legacy recovery method in current distributed graph
processing systems follows the checkpoint-restart strate-
gy [18], [21], [29]. It requires each compute node to peri-
odically and synchronously create a checkpoint by flushing
the current status of its own subgraphs to a persistent storage
such as the Hadoop distributed file system (HDFS). Upon
any failure, an (in-use or unused) healthy compute node is
employed to replace the failed node. All the compute nodes
reload their subgraph statuses from the most recent checkpoint
and redo all the computations. A failure is recovered when all
the nodes finish the computations that have been completed
before the failure occurs.

Although checkpoint-restart recovery is able to handle any
node failures, it potentially suffers from high recovery latency.
The reason is two-fold. First, checkpoint-restart recovery re-
executes the missing computations over the whole graph,
originally residing in both failed and healthy compute nodes,
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based on the most recent checkpoint. This could incur high
computation cost as well as high communication cost, includ-
ing loading the whole checkpoint, performing recomputation
and passing the messages among all compute nodes during
the recovery. Second, when a further failure occurs during
recovery, the lost computation caused by the previous failure
may have been partially recovered. However, checkpoint-
restart recovery will forget about all of this partially completed
computation, rollback every compute node to the most recent
checkpoint and replay the computation since then. This elim-
inates the possibility of performing recovery progressively.

To enable fast failure recovery, in this paper, we augment
the checkpoint-restart recovery with logging mechanism and
propose a new recovery scheme that is encapsulated with the
following three features to scale out the performance.
• Checkpoint+Log. The key idea of our approach is to confine
the recomputation to the subgraphs originally residing in failed
nodes. Note that graph computation is conducted iteratively.
During an iteration, every compute node examines its residing
vertices and performs vertex-centric computation sequentially.
The computation over a vertex in an iteration typically takes
the computed vertex value and receiving messages from the
last iteration as input. Hence, to recover failed vertices, it
is imperative to request all vertices to resend messages to
the failed ones when recomputing the lost iterations. For this
purpose, in addition to global checkpointing, we require every
compute node to locally log their outgoing messages at the end
of each iteration during execution. By augmenting checkpoint-
restart recovery with logging, we are able to show that graph
recomputation is confined to the failed vertices, and healthy
vertices are responsible for resending logged messages with-
out recomputation. We also provide a column-wise message
compression method to reduce the logging overhead.
• Parallel recovery. When the recovery starts, we redistribute
the subgraphs originally residing in the failed nodes over a
subset S of compute nodes to parallelize the recovery process.
Typically, the size of S is set to be much larger than the
number of failed nodes to scale out the performance. While
the computation cost can be minimized for S covering all the
available nodes, the communication cost may increase as a
side effect. We favor a good repartitioning method over failed
subgraphs that reduces the overall recovery time by taking both
computation cost and communication cost into consideration.
• Optimization. We formally quantify the recovery time
under a given repartitioning by measuring its computation
and communication costs. Our goal is to find a repartitioning
for failed subgraphs with minimized recovery time. We prove
the complexity of the problem is NP-complete and develop a
heuristic algorithm to tackle this problem practically.

We conduct extensive experiments on synthetic and real-life
datasets, showing our proposed recovery method outperforms
traditional checkpoint-restart recovery by a factor of 12 to 30
in terms of recovery time, and a factor of 38 in terms of the
network communication cost using 40 compute nodes.

In contrast with traditional checkpoint-restart recovery, our
approach eliminates high recomputation cost for the subgraphs
residing in the healthy nodes. Furthermore, we distribute the
recomputation tasks for the subgraphs originally in the failed

nodes over multiple compute nodes to achieve better parallelis-
m. Thus, our approach is not a replacement for checkpoint-
restart recovery. Instead, it complements the existing method
by accelerating the recovery process via simultaneous reduc-
tion on both recovery communication cost and computation
cost. Several strategies are introduced to reduce the logging
overhead and ensure the correctness of our recovery method
when performing graph repartitioning at runtime.

A preliminary version of this work was published in [26].
Here in this paper, (1) we formally define the correctness
of a failure recovery scheme, and propose a theorem that
guides the design of the scheme by maintaining complete
outgoing messages from every vertex in each iteration. We
prove that our preliminary version strictly follows the cor-
rectness theorem; (2) To reduce potentially expensive I/O
and communication cost caused by the logging scheme in
[26], we propose a column-wise message compression scheme
and a lazy decompression technique to avoid unnecessary
message decompression during the recovery execution. We
experimentally show the log compression and decompression
scheme can reduce the recovery latency and communication
cost by a factor up to 25% and 2.4X, respectively.

2 PRELIMINARIES

This section provides background and our problem definition.

2.1 Distributed Graph Processing Systems (DGPS)

• Graph model. The input to the DGPS is a labeled, directed
graph G(V, E ,L,F), where (1) V is the set of vertices, (2)
E is the set of edges, (3) L is the set of labels in forms of
strings or numerical values, and (4) F is a labeling function
that maps every vertex/edge to a label in L. For an edge
⟨vi, vj⟩ ∈ E , vi and vj are referred to as source and target
vertices, respectively; we say vj is a direct successor of vi,
and vi is a direct predecessor of vj . In DGPS, labels of vertices
and edges are utilized in the computation logic specified by
users. As our recovery scheme only relies on the computation
model of DGPS rather than any computation logic, we simplify
our graph model to be G(V, E) when the context is clear.
• Graph partitioning. In DGPS, the set of vertices is divided
into partitions. Each partition of G is represented as P (V,E),
where P.V ⊆ V and P.E = {⟨vi, vj⟩ ∈ E|vi ∈ P.V }.
That is, P.E includes all the edges with source vertices in
P.V . For simplicity, we use P and P (V,E) interchangeably.
All partitions are distributed among compute nodes. Let P
and N respectively be the set of partitions for G and the
set of compute nodes in the cluster. Typically, the number
of partitions is set to be much larger than that of compute
nodes (i.e., |P| ≫ |N |), to achieve a better workload balance.
Note that partitions can be dynamically redistributed across
compute nodes during the graph computation.

We also denote by φ, ϕp two mappings, where (1) vertex-to-
partition mapping φ : V → P records the belonging partition
of each vertex; (2) partition-to-node mapping ϕp : P → N
records the residing compute node of each partition. Fig-
ure 1(a) shows a distributed graph G over two nodes N1, N2.
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Fig. 1. Distributed Graph and Partitions

G is divided into 5 partitions P1-P5, as shown in Figure 1(b).
We use colors to differentiate vertices in different partitions.
• Basic architecture. Pregel-like DGPS follows a master/slave
architecture. The master is responsible for coordinating the
slaves, but typically does not manage any graph partitions.
The slaves are in charge of performing computation over its
assigned partitions in each superstep. More details on this
architecture can be found in [21].
• Computation model. The computation model in Pregel-
like DGPS follows the Bulk Synchronous Parallel (BSP)
model [28]. Typically, the computation consists of (1) an input
phase, which splits graph into partitions and distributes them
across compute nodes, (2) followed by a set of iterations,
called supersteps, each of which is separated by a global
synchronization point, and (3) finally an output phase, where
values of vertices are typically taken as the output.

Every vertex carries two statuses: active and inactive. All
vertices are active at the beginning of superstep 1. A vertex
can deactivate itself by voting to halt. Once a vertex becomes
inactive, it has no further work to do in the following su-
persteps unless activated by incoming messages from other
vertices. In each superstep, only active vertices participate in
computation: process messages sent by other vertices in the
last superstep, update its value or its outgoing edges’ values
and send messages to other vertices (to be processed in the
next superstep). Such computation logic is expressed by a
user-defined compute function. All active vertices in the
same compute node execute the function sequentially, while
the executions in different compute nodes are performed in
parallel. After all the active vertices finish their computation
in a superstep, a global synchronization point is reached.

2.2 Problem Statement
Let C(∈ N+) be the checkpointing interval. A synchronous
checkpoint is performed at end of superstep iC or at the
beginning of superstep iC + 1 (i ∈ N+). Without loss of
generality, we adopt the latter strategy. We consider a graph
job, executed on a set N of compute nodes from superstep 1 to
smax. A compute node may fail at any time during the normal
job execution. Let F (Nf , sf) denote a failure that occurs on
a set Nf(⊆ N ) of compute nodes when the job executes in
superstep sf(∈ [1, smax]). For simplicity, we use F (Nf , sf)
and F interchangeably in the rest of this paper. Let C+ 1 be
the latest checkpointing superstep when a failure F occurs.
We associate a state with each vertex, as defined below.

Definition 1 (State). ∀v ∈ V , the state of v, denoted as
S(v, i) in the normal job execution and as SF (v, i) during

the recovery of failure F , is a function recording the latest
superstep that has been completed for v at the beginning of
superstep i (∈ [1, smax]).

Based on Definition 1, we have S(v, i) = i − 1 during
normal job execution. However, upon a failure, all the vertices
originally residing in the failed nodes are lost while the others
are still maintained in healthy nodes. For this reason, when
the recovery starts, for every vertex v originally residing in
the failed nodes (i.e. ϕp(φ(v)) ∈ Nf ), its state is C while the
state for any of the other vertices is sf . Formally, we have:

SF (v,C+ 1) =

{
C If ϕp(φ(v)) ∈ Nf

sf Otherwise
(1)

As discussed later, when recovery starts, partitions origi-
nally residing in the failed nodes will be reassigned to other
compute nodes for better parallelism, i.e., the partition-to-
node mapping ϕp, might be adjusted. To avoid abuse of
notations, we use ϕp to particularly represent the partition-to-
node mapping during normal job execution. For each superstep
i (∈ [C+ 1, sf + 1]) during the recovery, we have:

SF (v, i) =

{
i− 1 If ϕp(φ(v)) ∈ Nf

sf Otherwise
(2)

We now formalize the failure recovery problem as follows.

Definition 2 (Failure recovery). Given a failure F (Nf , sf), the
recovery for F is to transform the state for each v ∈ V from
SF (v,C+ 1) to SF (v, sf + 1) (i.e., sf ).

Example 1 (Running example). Consider the G in Figure 1(a)
and a failure F ({N1}, 12). Assume that every vertex is
active and sends messages to all its direct successors in
each superstep. C is set to 101, i.e., the latest checkpoint
is made at the beginning of superstep 11. We have: (1)
∀v ∈ {A,B,C,D,E, F}, SF (v, 11) = 10, SF (v, 11) = 12; (2)
∀v ∈ {G,H, I, J}, SF (v, 11) = 12, SF (v, 11) = 12.

The recovery for F is to transform the state of each vertex
to the one achieve after the completion of superstep 12.

It is possible that new failures occur during the recovery
for failure F (Nf , sf). Particularly, multiple failures may occur
sequentially before all vertices achieves state sf . We refer to
these failures as the cascading failures for F .

Definition 3 (Cascading failure). Given F (Nf , sf), a cascad-
ing failure for F is a failure that occurs during the recovery
for F , i.e., after F occurs but before F is recovered. Let F be
a sequence of all the cascading failures for F . We denote by
Fi(Nf i, sf i) the i-th cascading failure in F.

Upon any cascading failure, analogous recomputation from
the latest checkpointing superstep C + 1, to sf will be per-
formed to recover the state of each vertex. Note that when a
cascading failure Fi(Nf i, sf i) occurs, the states of the vertices
failed by previous failures may have been partially recovered.
For these vertices, SFi(v,C+ 1) > C. However, the recovery
for cascading failures are still to transform the states of all
vertices to sf and hence Definition 2 is also applicable to

1. Unless otherwise specified, C is set to 10 in the rest of this paper.
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cascading failure recovery. The goal of our paper is to recover
failure F with minimized recovery time.
Problem Statement: Given a failure F (Nf , sf), we denote
by Γ(F ) the recovery time for F , i.e., the time span between
the start and the completion of recovering F . The objective of
this paper is to recover F with minimized Γ(F ).

To solve this problem, we not only design a failure recovery
scheme that is able to handle both single failures and cascading
failures, but also develop a recovery algorithm that is able to
recover failures efficiently in order to prevent the system from
entering an endless recovery loop.

3 CHECKPOINT AND LOG BASED RECOVERY

This section introduces the checkpoint and log based recovery
scheme and our efficient partition-based recovery algorithm.

3.1 Checkpoint and Log based Recovery Scheme

A naı̈ve approach to recovering F correctly is to rollback the
state of each vertex to C based on the latest checkpoint, and
redo missing supersteps from C+ 1 to sf .

Definition 4 (Correctness). Let VALUE(v, i) (VALUE∗(v, i))
and MSG(v, i) (MSG∗(v, i)) be the value and the set of
received messages for vertex v at the beginning of superstep
i + 1 during normal execution (recovery), respectively. A
recovery algorithm is correct if and only if for any failure
F (Nf , sf), after the recovery algorithm finishes, VALUE(v, sf )
= VALUE∗(v, sf ) and MSG(v, sf ) = MSG∗(v, sf ).

Recall the computation model of DGPS, for any v ∈ V ,
VALUE(v, i+1) relies on VALUE(v, i) and MSG(v, i). Hence,
we have the following theorem.

Theorem 1. Given a failure F (Nf , sf), for any v ∈ V and
i ∈ [C, sf ], if VALUE(v, i) = VALUE∗(v, i) and MSG(v, i) =
MSG∗(v, i), then VALUE(v, i+ 1) = VALUE∗(v, i+ 1).

Based on Theorem 1, it is trivial to prove that the above
naı̈ve approach can perform failure recovery correctly because
∀i ∈ [C, sf ], VALUE(v, i) = VALUE∗(v, i) and MSG(v, i) =
MSG∗(v, i) holds for any vertex v. Note that if v resides in
healthy nodes N−Nf , we have VALUE(v, sf ) = VALUE∗(v, sf )
and MSG(v, sf ) = MSG∗(v, sf ) and hence it is practically
unnecessary to redo computations for v. This inspires us
to perform failure recovery that is confined to the vertices
residing in failed nodes. Intuitively, if we collect complete
MSG(v, i) for each v ∈ Nf (i ∈ [C, sf ]), then we can guarantee
that VALUE(v, sf ) = VALUE∗(v, sf ) and MSG(v, sf ) = MS-
G∗(v, sf ). Following this intuition, we propose a checkpointing

Message Group 1

...

Message Group i

...

Metadata Header

v1, v2,

msg1, msg2,

P1

Inter-partition

messages

MFile

Fig. 3. MFile Layout Example

plus logging recovery mechanism that is able to perform the
failure recovery correctly and efficiently.

In particular, during normal job execution, we request each
compute node to log the inter-partition messages locally (due
to the fact that partitions could be transferred among compute
nodes for load balance purpose). Upon a failure F (Nf , sf),
we first rollback the state of each vertex v residing in Nf

to C, and then redo the missing supersteps by replaying the
computation, while vertices in N − Nf do not participate in
any computation by merely re-sending the logged messages
to vertices in failed nodes. Based on the logged messages, we
can collect complete MSG(v, i) for each v ∈ Nf , and hence
correctly recover the state of v from C to sf . Since the mainte-
nance of logged messages may suffer from expensive I/O and
communication (messages from healthy nodes to failed nodes)
cost, we propose a column-wise message compression and a
lazy decompression technique to avoid unnecessary message
decompression during the recovery execution.
• Column-wise message compression. The inter-partition
messages in each compute node are typically organized in a
three-level hash table, as shown in Figure 2. The first, second
and third levels organize messages to different groups by target
compute nodes, target partitions and target vertices, respec-
tively. Based on this organization, if the graph computation is
commutative and associative, then one compression strategy
is to combine all messages intended for a vertex into a single
message (see v1i and its messages in Figure 2). To further
compress the messages, one naive approach is to employ some
regular compression method such as Gzip, over the whole
messages directly. Nevertheless, Gzip-like compression can
hardly achieve a high data compression ratio due to vertices
and messages from different domains. Hence, we leverage the
column-wise organization to compress the messages.

In a compute node N , we store messages sent from the
same partition into a single file, named as MFile. MFile
stores messages using the layout in Figure 3. Specifically,
messages sent to the same partition compose a message group.
A message group contains two sections. The first section
is a metadata header for the message group. The metadata
header stores the information on the number of vertices (or
messages) in this message group, total bytes in each column,
and total bytes of each field in a column. The second section
contains two columns, target vertices and messages, stored
separately. The metadata header, target vertices and messages
are compressed independently. We use RLE (Run Length
Encoding) algorithm [13] to compress metadata headers where
the RLE algorithm can find long runs of repeated data values,
especially for fixed field length. Target vertices and messages
are independently compressed using Gzip.
• Lazy decompression. During the recovery, it is not nec-
essary for each healthy node to read all logged messages
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into memory. Instead, it can read the messages that are sent
to failed compute nodes. Thus, we can skip unnecessary
messages and gain I/O advantages. For example, if N1 in
Figure 1(a) fails, for each MFile, N2 only reads message
groups sent to partitions in {P1, P2, P3}. All these messages
will be loaded into memory in the compressed format. We
employ lazy decompression technique for message passing
to obtain communication advantages. Specifically, compressed
messages are directly sent to target compute nodes, and the
target compute nodes decompress the messages accordingly.

3.2 Partition-based Recovery Algorithm
Under the checkpoint and log based recovery mechanism, we
propose a partition-based method to recover the failures. Upon
a failure, the recovery process is initiated by the recovery
executor that is responsible for the following three tasks.
• Generating the partition-based recovery plan. The input
to this task includes the state of each vertex before the recovery
starts, and the statistics stored in HDFS. We collect statistics
during the checkpointing, including:
(1) computation cost of each partition in superstep C.
(2) partition-node mapping ϕp in superstep C.
(3) for any two partitions in the same compute node, the size
of messages forwarded from one to another in superstep C.
(4) for each partition P , total message size from an outside
node (where P does not reside) to P in superstep C.

The statistics require a storage cost of O(|P| + |P||N | +
( |P||N| )

2), which is much lower than that of a checkpoint. The
output recovery plan is represented by a reassignment for
failed partitions, which is formally defined as follows.

Definition 5 (Reassignment). Let PF (or PFi) be the set of
partitions residing in the failed nodes, for a failure F (Nf , sf)
(or its cascading failure Fi(Nf i, sf i)). The reassignment for
the failure F (or its cascading failure Fi) is a function ϕF:
PF → N (or ϕFi : PFi → N ). For simplicity, ϕF is collectively
represented as ϕF or ϕFi when the context is clear.

Figure 4(a) lists a reassignment for F ({N1}, 12) in Example 1,
where we assign P1 to N1 (the replacement) and P2, P3 to N2.
• Recomputing failed partitions. This task is to inform every
compute node of the recovery plan ϕF. Each node N checks
ϕF to see whether a failed partition is assigned to it. If so,
N loads the partition status from the latest checkpoint. The
status of a partition includes (1) the vertices in the partition
and their outgoing edges; (2) values of the vertices in the
partition achieved after the completion of superstep C; (3) the
status (i.e., active or inactive) of every vertex in the partition
in superstep C+1; (4) messages received by the vertices in the
partition in superstep C (to be processed in superstep C+ 1).
Every node then starts recomputation for failed partitions. The
details are provided in Section 3.2.1.
• Exchanging graph partitions. This task is to rebalance the
workload among all the compute nodes after the recomputation
of the failed partitions completes. If the replacements have
different configurations than the failed nodes, we allow a new
partition assignment (different from the one before failure
occurs) to be employed for a better load balance, following
which, the nodes might exchange partitions among each other.
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3.2.1 Recomputing Failed Partitions
Consider a failure F (Nf , sf). The recomputation for the failed
partitions starts from the most recent checkpointing superstep
C + 1. After all the compute nodes finish superstep i, they
proceed to superstep i+1 synchronously. The goal of recovery
is to achieve state sf , i.e., the recomputation terminates when
all the compute nodes complete superstep sf .

Algorithm 1 provides recomputation details of node N in
a superstep during recovery. In superstep i, N maintains a
three-level hash data structure M (shown in Figure 2) that
maintains the messages from node N to other nodes (line 1).
N iterates through all its belonging partitions. For each of its
belonging partitions, P , if its state2 is no less than the current
superstep, we do not need to recover the status of vertices in
P (line 2); otherwise, N sequentially checks all the vertices in
P and for each active vertex, we redo the vertex computation
and store the out-going messages in M . A message m ∈ M
is forwarded if m is needed by its destination vertex (line 10)
to perform recomputation in the next superstep (line 3-10). In
order to recover cascading failures correctly, we still need to
maintain the outgoing messages that are produced during the
recovery (line 10). Finally, we resend messages in MFile to
the vertices in the failed partitions (line 12-14).

Example 2. Figure 4(b) illustrates recomputation for
F ({N1}, 12), given ϕF in Figure 4(a). We use directed edges
to represent the forwarding messages. In superstep 11, N1 and
N2 respectively perform 2 and 4 vertex computations for A-F ;
2 inter-node messages D → B, G → B are forwarded. N2

retrieves 4 logged messages sent by G in normal job execution
of superstep 11 but only re-sends messages to B,D because
H, I belongs to healthy partition P4. Further, N1, N2 will log
5 messages sent by A-F locally as they have not yet been
included in the log. Superstep 12 performs similarly, except
for an additional message D → G.

Note that the messages received by a vertex during recom-
putation might have a different order compared with those
received during normal execution. Hence, the correctness of
our recomputation logic implicitly requires the vertex com-
putation is insensitive to message order. This requirement
is realistic since a large range of graph applications are
implemented in a message-ordering independent manner. Ex-
ample includes PageRank, BFS, triangle counting, connected
component computation, etc. While we are not aware of any

2. Consider that vertext-to-partition mapping is invariant during the entire
job execution. The states of vertices in the same partition are the same. We
use SF (P, i) to denote the state of any vertex in partition P in superstep i.
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Algorithm 1: Recomputation
Input: i, current superstep

N , a compute node
1 M ← ∅;
2 foreach partition P ∈ N do
3 if SF (P, i) ≥ i then continue;
4 foreach v in partition P do
5 if v.Active= True then
6 Perform computation for v;
7 M.add(v.sendMsg);
8 for m ∈ v.sendMsg do
9 vd ← the target vertex of the message m;

10 if SF (vd, i) = i then Send m to vd

11 Compress and Flush M into local storage;
12 for P ∈ PF do
13 M ′ ← load compression messages from MFiles sent to P in superstep i;
14 send M ′ to the compute node that P resides in;

graph algorithms that are nondeterministic with respect to the
message order, our recovery method can be extended easily to
support such algorithms if any. Specifically, we can assign a
unique identifier to each message. Recall that all the messages
to be processed in a superstep must be completely collected
by graph processing engine before any vertex computation
starts. In each superstep (either during normal job execution or
recovery), for every active vertex v, we can sort all messages
received by v based on their identifiers, before initiating the
computation. The sorting ensures the messages for a vertex
computation during normal job execution follow the same
order as those for recomputation during recovery.

3.2.2 Handling Cascading Failures
We now consider cascading failures for F (Nf , sf). A useful
property of our partition-based recovery algorithm is that for
any failure, the behavior of every compute node only relies on
the reassignment for the failure and the state after the failure
occurs. That is, in our design, given the reassignment and state
for the failure, the behavior of every node is independent of
what the failure is. The failure can be F itself or any of its
cascading failures. Therefore, whenever a cascading failure for
F occurs, the current executing recovery program is terminated
and the recovery executor can start a new recovery program
for the new failure using the same recovery algorithm that is
given in Algorithm 1.

In practice, the occurrence of failures is not very frequent
and hence we expect at least one recovery program to complete
successfully. F is recovered when a recovery program exits
normally. That is, all the vertices complete superstep sf .
Further, due to cascading failures, a compute node may receive
new partitions during the execution of each recovery program.
After recomputation finishes, nodes may exchange partitions
to re-balance the workload. The following example illustrates
how our recovery algorithm handles cascading failures.

Example 3. We start with a recovery program for
F ({N1}, 12) in Example 2. Suppose there occurs a cas-
cading failure F1({N2}, 12) of F . Vertices C-J residing in
N2 are lost due to F1, while A,B in healthy node N1

are recovered. Hence, the states of vertices after F1 are:
SF1(A, 11) = SF1(B, 11) = 12 and SF1(v, 11) = 10 for

v = C-J . A new recovery program is initiated for F1. Suppose
the reassignment for F1 assigns P2, P3 to N1 and P4, P5 to
N2 (replacement). N1, N2 load the statuses of newly assigned
partitions from the latest checkpoint and start recomputation.
Since SF1(A, 11) = SF1(B, 11) = 12, we only perform
recomputation for vertices C-J in newly failed partitions P2-
P5 when re-executing superstep 11, 12. In superstep 11, C-J
forward messages to each other. In superstep 12, these vertices
send messages to A,B as well. Suppose there is no further
cascading failure after F1. The recovery for F is accomplished
upon the completion of the recovery program triggered by F1.

Example 3 considers cascading failures that occur during
recomputation. In practice, failures may occur at any time. If
a failure occurs during the period of generating a recovery plan
for the previous failure, we treat both failures as one bigger
failure and the union of their failed nodes as the failed node
set. If a failure occurs during the exchanging phase, we treat it
as the one that occurs in superstep sf . Our recovery approach
can be applied to both cases. Without loss of generality, in
the rest of this paper, we only consider cascading failures that
occur in a recomputation phase.

Theorem 2. Our partition-based recovery algorithm is correct
and complete.

Proof: We first prove the correctness of the partition-
based recovery algorithm (Algorithm 1). The correctness of
a recovery algorithm is given in Definition 4 in which a
recovery algorithm is correct if and only if for every vertex
v, VALUE(v, sf ) = VALUE∗(v, sf ) and MSG(v, sf ) = MS-
G∗(v, sf ). That is, when the recovery completes, the value
(VALUE(v, sf )) and the messages ( MSG(v, sf )) collected of
every vertex v must be the same as that during the normal
job execution. In Theorem 1, we find that in every superstep
during the failure recovery, if VALUE(v, sf ) = VALUE∗(v, sf )
and MSG(v, sf ) = MSG∗(v, sf ), then the algorithm is correct.
To prove the correctness, we then demonstrate that Algorithm
1 strictly follows Theorem 1.
• Under any single failure F (Nf , sf), Algorithm 1 has the
following properties in every superstep i during the recovery:
(1) For any vertex v in a partition P ∈ PF, based on Equation
2, its state is less than i. We then perform the recomputation
over v (lines 2–6).
(2) Given any vertex v in a partition P ∈ PF, the messages
collected by v consists of two parts. The first part is sent from
vertices in failed partitions as well (lines 8–10) and the other
part is from vertices residing in healthy partitions of the other
compute nodes (lines 12–14).

The above properties guarantee: i) the vertex value and
received messages of a vertex computation in any superstep
during recomputation is exactly the same as that during normal
job execution; ii) for failure F (Nf , sf), when our recovery al-
gorithm finishes successfully, each vertex completes superstep
sf and receives the same set of messages as it does at the end of
superstep sf during normal job execution. Based on Theorem
1, these properties ensure the correctness of our approach.
• Under any cascading failure Fi(Nf i, sf i), Algorithm 1 has:
(1) It recovers Fi as a single failure (lines 2–6).
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Algorithm 2: CostSensitiveReassign
Input : PF, failed partitions

I, statistics
N , a set of compute nodes

Output: ϕF: reassignment
1 ϕF ←RandomAssign(PF,N);
2 Tlow ←ComputeCost(ϕF, I,N);
3 while true do
4 ϕ′

F ← ϕF; P′
F ← PF; i← 0;

5 while P′
F ̸= ∅ do

6 i← i + 1;
7 Li ←NextChange(ϕ′

F ,P′
F, I,N);

8 foreach P ∈ Li.ϕF .Keys() do
9 ϕ′

F (P )← Li.ϕF (P );
10 P′

F ← P
′
F − {P};

11 l← argmini Li.T ime;
12 if Ll.T ime < Tlow then
13 for j = 1 to l do
14 foreach P ∈ Lj .ϕF .Keys() do
15 ϕF(P )← Lj .ϕF (P );

16 Tlow ← Ll.T ime;
17 else
18 break;

(2) After recovering the state of every vertex v to the state that
Fi occurs, Fi and Fi−1 (if any) are integrated into a single
failure F ′(Nf i ∪Nf i−1, sf i−1), and Algorithm 1 continues to
recover F ′ instead of Fi−1.
(3) The above recovery continues until the state of every
vertices is updated to F .

Analogous recovery of every single failure is performed
under any cascading failures, and hence the correctness of our
proposed algorithm can be guaranteed. Our recovery algorithm
is complete in that the recovery logic is independent of high-
level applications. That is, any node failure can be correctly
recovered using our algorithm.

4 REASSIGNMENT GENERATION
In this section, we present how to generate a reassignment for
a failure. Consider a failure F (Nf , sf). The reassignment for
F is critical to the overall recovery performance, i.e., the time
span of recovery. In particular, it decides the computation and
communication cost during recomputation. Our objective is to
find a reassignment that minimizes the recovery time Γ(F ).

Given a reassignment for F , the calculation of Γ(F ) is
complicated by the fact that Γ(F ) depends not only on the
reassignment for F , but also on the cascading failures for F
and the corresponding reassignments. However, the knowledge
of cascading failures can hardly be obtained beforehand since
F and its cascading failures do not arrive as a batch but
come sequentially. Hence, we seek an online reassignment
generation algorithm that can react in response to any failure,
without knowledge of future failures.

Our main insight is that when a failure (either F or its
cascading failure) occurs, we prefer a reassignment that can
benefit the remaining recovery process for F by taking into
account all the cascading failures that have already occurred.
More specifically, we collect the states for all the vertices
after the failure occurs and measure the minimum time Tlow

required to transform their states to sf , i.e., the time of per-
forming recomputation from the beginning of superstep C+1

to that of sf+1 without further cascading failures. We then aim
to produce a reassignment that minimizes Tlow. Essentially,
Tlow provides a lower bound of remaining recovery time for
F . In what follows, we introduce how to compute Tlow and
then provide our cost-driven reassignment algorithm.

4.1 Estimation of Tlow

For any failure, Tlow is determined by the total amount of
computation cost and network communication cost required
during recomputation, which is formally defined as follows.

Tlow =

sf∑
i=C+1

(Tp [i] +Tm [i]) (3)

where Tp [i] and Tm [i] denote the time for vertex computation
and that for inter-node message passing required in superstep
i during recomputation, respectively.

Equation 3 ignores the downtime period for replacing failed
nodes and synchronization time because they are almost invari-
ant w.r.t. the recovery methods discussed in this paper. We also
assume the cost of intra-node message passing is negligible
compared with network communication cost incurred by inter-
node messages.

We now focus on how to compute Tp [i] and Tm [i] in Equa-
tion 3. Given a failure F (Nf , sf), according to the computation
model in Section 2.1, computation time required in a superstep
is determined by the slowest node, i.e., maximum computation
time among all the nodes. Let τ(v, i) denote the computation
time of v in the normal job execution of superstep i. Regarding
that the recovery is confined to the vertices residing in the
failed partitions, we then compute Tp [i] by collecting the
sum of computations for vertices in failed partitions in each
compute node, and Tp [i] is quantified below:

Tp [i] = max
N∈N

∑
P∈PF∧ϕF(P )=N

∑
v∈P

τ(v, i) (4)

For simplicity, we assume computations for vertices in one
node are performed sequentially. A more accurate estimation
for Tp [i] can be applied if the computation within a node
can be parallelized using machines with multithreaded and
multicore CPUs.

To compute Tm [i], we adopt the Hockney’s model [14],
which estimates network communication time by the total size
of inter-node messages divided by network bandwidth. Let
M(P, P ′) be the size of compressed messages from P to P ′

forwarded when re-executing superstep i. Suppose the network
bandwidth is B. The communication cost consists of two parts:
(1) messages between every two failed partitions that span two
compute nodes, and (2) messages from partitions residing in
the other healthy compute nodes to every failed partition. Let
ϕF be the partition-to-node mapping (including partitions in
failed and healthy nodes) when the recovery starts and hence
mapping ϕF is included in ϕF . We can compute Tm [i] below:

Tm [i] =
∑

P∈PF

∑
P ′∈P∧ϕF(P ) ̸=ϕF (P ′)

M(P, P ′)/B (5)

Note that τ(v, i) and M(i) in Equation 4 and 5 can only
be obtained during the runtime execution of the application.
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Fig. 5. Example of Modifications

A perfect knowledge of these values requires a detailed
bookkeeping of graph status in every superstep, which incurs
high maintenance cost. Therefore, we refer to statistics (See
Section 3.2) for approximation. Specifically, we compare the
status of each partition with the current superstep (line 3
in Algorithm 1) to examine whether partition will perform
computation and forward messages to another partition during
the re-execution of superstep i, and based on the statistics, we
know the computation cost and communication cost among
these partitions in superstep C+ 1. We then approximate the
costs in superstep i by those in superstep C+ 1.

Example 4. Consider F ({N1}, 12) in Example 3 and ϕF

in Figure 5(a). Let c1 and c2 be the time for each vertex
computation and that for sending an inter-node message,
respectively. To compute Tlow under ϕF, we calculate the re-
execution time of superstep 11, 12 without further cascading
failures. In both supersteps, computation time is 4c1 caused
by P1, P2 in N1. Communication time in superstep 11 is 5c2
caused by 5 inter-node messages: 1 from P2 to P1, 4 from
P4 to P2, P3, and that in superstep 12 is 6c2 following the 6
cross-node edges. Hence, Tlow under ϕF is 8c1 + 11c2.

Theorem 3. Given a failure, finding a reassignment ϕF for it
that minimizes Tlow in Equation 3 is NP-complete.

Proof: We use a reduction from the (k, 1)-balanced graph
partitioning problem (k ≥ 2) defined as follows. Given an
undirected graph G(V, E ,We) where We : V × V → R∗
represents non-negative edge weights, the task is to divide V
into k components (each of size less than |V|k ) so that the total
weight of edges between different components is minimized.
The complexity of the problem is NP-complete [5].

Our reassignment generation problem can be viewed as
finding a partitioning ϕF for an undirected weighted re-
assignment graph where every failed partition P ∈ PF

is condensed into a vertex vp with weight of: Wv(vp) =∑sf
i=C+1

∑
v∈P τ(v, i) and the weight of an edge (vp, vp′) sat-

isfies: We(vp, vp′) =
∑sf

i=C+1
M(P,P ′,i)

B for ϕF(P ) ̸= ϕF(P
′)

and We(vp, vp′) = 0 for ϕF(P ) = ϕF(P
′), that minimizes:∑

P,P ′∈Pf

We(vp, vp′) + max
N∈N

{
∑

P∈Pf ,ϕF(P )=N

Wv(vp)}.

Given G = (V, E ,We), we can construct a reassignment graph
G′ = (V, E ,We,Wv) where vertices in V have equal weights
of wM . wM is set to a sufficiently large number, e.g., total edge
weight, to ensure the optimal repartitioning for G′ is (k, 1)-
balanced. Suppose ϕF is the optimal reassignment for G′ over
k compute nodes. It is easy to verify that i) ϕF must produce
k perfectly balanced partitions, where k − n%k partitions
contain ⌊n

k ⌋ vertices and n%k partitions include ⌊n
k ⌋ + 1

vertices; ii) ϕF is the optimal (k, 1)-balanced partitioning for

Algorithm 3: NextChange
Input : ϕF, reassignment P′

F , a set of partitions
I, statistics N , a set of compute nodes

Output: Li: exchange
1 Li.ϕF ← ∅; Li.T ime← +∞;
2 foreach P ∈ P′

F do
3 foreach P ′ ∈ P′

F − {P} do
4 ϕ′

F ← ϕF;
5 Swap ϕ′

F (P ) and ϕ′
F (P ′);

6 t′ ←ComputeCost(ϕ′
F , I,N);

7 if Li.T ime > t′ then
8 Li.ϕF ← {(P, ϕF(P

′)), (P ′, ϕF(P ))};
9 Li.T ime← t′;

10 foreach N ∈ N − {ϕF(P )} do
11 ϕ′

F ← ϕF; ϕ′
F (P )← N ;

12 t′ ←ComputeCost(ϕ′
F , I,N);

13 if Li.T ime > t′ then
14 Li.ϕF ← {(P,N)};
15 Li.T ime← t′;

G. That is, the optimization objectives of two problems are
identical. The reassignment generation problem can be solved
iff the (k, 1)-balanced graph partitioning is solved.

4.2 Cost-Sensitive Reassignment Algorithm
Due to the hardness result in Theorem 3, we develop a
cost-sensitive reassignment algorithm. Before presenting our
algorithm, we shall highlight the differences between our
problem and traditional graph partitioning problems. First and
foremost, the traditional graph partitioning problems focus
on partitioning a static graph into k components with the
objective of minimizing the number of cross-component edges.
In our case, we try to minimize the remaining recovery time
Tlow. Tlow is independent of the original graph structure
but relies on the vertex states and message-passing during
the execution period. Second, graph partitioning outputs k
components where k is predefined. On the contrary, our
reassignment is required to dynamically allocate the failed
partitions among the healthy nodes without the knowledge
of k. Further, besides the partitioning, we must know the
node to which a failed partition will be reassigned. Third,
traditional partitioning always requires k components to have
roughly equal size, while we allow unbalanced reassignment,
i.e., assign more partitions to one node but fewer to another,
if a smaller value of Tlow can be achieved.

Algorithm 2 outlines our reassignment algorithm. We first
generate a reassignment ϕF by randomly assigning partitions
in PF among compute nodes N , and then calculate Tlow under
ϕF (line 1-2). We next make a copy of ϕF as ϕ′F and improve
ϕ′F iteratively (line 3-18). In the i-th iteration, the algorithm
chooses some partitions and modifies their reassignments (line
7-9). The modification information is stored in Li. Li is in the
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form of (ϕF , T ime), where ϕF is a partition-node mapping
recording which partition is modified to be reassigned to which
node, and Time is Tlow under the modified reassignment. The
selected partitions are removed for further consideration (line
10). The iteration terminates when no more failed partitions are
left. After that, we check list L and find l such that Ll.T ime is
minimal (line 11), i.e., l = argmini{Li.T ime}. If Ll.T ime
is smaller than Tlow achieved by the initial reassignment ϕF,
we update ϕF by sequentially applying all modifications in
L1, · · · ,Ll (line 12-16), and start another pass. Otherwise,
the algorithm outputs ϕF as the result.

Algorithm 3 describes how to generate modification Li

(line 7 in Algorithm 2) in the i-th iteration. We focus on
two types of modifications: i) exchanging the reassignments
between two partitions; ii) moving one partition from one
compute node to another compute node. Given a reassignment
ϕF, NEXTCHANGE iterates over all the partitions (line 2)
and for each partition P , it enumerates all of the possible
modifications, i.e., exchanging the reassignment of P with
another partition (line 3-9) as well as assigning P to another
node instead of ϕF(P ) (line 10-15). NEXTCHANGE computes
the corresponding Tlow achieved by each modification and
chooses the one with minimized value of Tlow as the mod-
ification Li.

Example 5. Continue with Example 4. Suppose c1
c2

= 1.1.
Figure 5 shows the Tlow in two passes under different modifi-
cations. The final reassignment with minimum Tlow (8c1+4c2)
is achieved by assigning P1 to N1 and P2, P3 to N2.

5 IMPLEMENTATION

We implement our partition-based failure recovery method on
Apache Giraph [1], an open-source implementation of Pregel.
It is worth mentioning that our proposed recovery method can
be integrated to other distributed graph processing platforms
such as Hama [2], in a similar way.
Giraph overview. Giraph distributes a graph processing job
to a set of workers. One worker is selected as the master
that coordinates the other slave workers, which perform vertex
computations. One of the slaves acts as zookeeper to maintain
various statuses shared among the master and slaves, e.g.,
notifying slaves of partitions assigned by the master, doing
synchronization after accomplishing a superstep. Figure 6
shows the processing logic of workers in one superstep.
Initially, the master generates partition assignment indicating
which partition is processed by which slave, and writes the
partition-to-slave mapping into zookeeper. Slaves fetch the
mapping from zookeeper and exchange partitions along with
their receiving messages based on the mapping. They then
check whether the current superstep is a checkpointing super-
step. If so, each slave saves the status of its partitions to a
stable storage. After that, every slave performs computation
for the vertices residing in it, sends messages and collects
messages sent to its vertices. Finally, the master synchronizes
the completion of the superstep.
Failure recovery. Node failures are detected by the master at
the end of each superstep, before synchronization. The master
checks the healthy status registered periodically by every slave

Assign 

partitions

Load partitions

Perform 

computation

Synchronize

checkpoint

Synchronize

superstep

Exchange

partitions

Save

checkpoint
Restart?

Master

Slavers

N

Y

Fig. 6. Processing a Superstep in Giraph

and considers a slave as failed if it has not registered its status
over a specified interval. Giraph adopts checkpoint-restart
recovery mechanism. We refer to the first superstep performed
upon a failure as restart superstep. In the restart superstep,
after the master generates the recovery plan and writes it to the
zookeeper, slaves will load failed partitions that are assigned
to them from the latest checkpoint and start recomputation.
Recovery details are omitted to avoid redundancy.
Major APIs. To support partition-based failure recovery,
we introduce several APIs to Giraph, as shown in Figure 7.
We utilize PartitionOwner class to maintain ownership
of each partition. setRestartSuperstep() sets the next
superstep when a partition needs to perform computation;
setWorkerInfo() and setPreviousWorkerInfo() set
information (e.g., IP address) for current and previous slaves
in which a partition resides, respectively. To shuffle
a partition from slave 1 to slave 2, we can simply
set the previous, current workers to slave 1 and 2,
respectively; the workers can retrieve this information
via the three interfaces: getRestartSuperstep(),
getPreviousWorkerInfo() and getWorkerInfo().
To generate the ownership of every partition, we introduce
a new class FailureMasterPartitioner. This class will
be initialized in the beginning of each superstep, with two
major functions: createInitialPartitionOwners()

generates reassignment for newly failed partitions
and retains original ownership for healthy ones.
genChangedPartitionOwners() is applied to exchange
failed partitions after recovery finishes.
Our extensions. As illustration, we consider a failure (can
be a cascading failure) that occurs in executing superstep sf
and latest checkpointing superstep is c+ 1. We extend Giraph
mainly in the following three aspects.

Partition assignment. This is performed by the master in the
beginning of each superstep.
(1) During superstep 1 or the restart superstep, the master
invokes createInitialPartitionOwners() to generate
a partition assignment and set the current worker for each
partition accordingly. In superstep 1, we set the previous
worker for a partition to be the same as its current worker
and the restart superstep for each partition to 1. In the restart
superstep, we set the previous worker for each partition to
be the one before failure occurs. For newly failed partitions,
we set c+ 1 as their restart supersteps; for the other partitions,
their restart supersteps are set to be one after the last superstep
in which their computation are performed.
(2) genChangedPartitionOwners() is invoked in the other
supersteps, by the master to dynamically reassign partitions
among the slaves. This is achieved by setting the previous
worker of a partition as its current one and modifying its
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PartitionOwner() //metadata about ownership of a partition

void setRestartSuperstep(long superstep)

long getRestartSuperstep()

void setPreviousWorkerInfo(WorkerInfo workerInfo)

void getPreviousWorkerInfo()

void setWorkerInfo(WorkerInfo workerInfo)

void getWorkerInfo(WorkerInfo workerInfo)

FailureMasterPartitioner<I,V,E,M> //generate partition assignment

Collection<PartitionOwner> createInitialPartitionOwners

(Collection<WorkerInfo>, int max) //for restart

Collection<PartitionOwner> genChangedPartitionOwners

(Collection<PartitionStats>, Collection<WorkerInfo>, 

int max, long superstep)

FailureMasterPartitioning //generate reassignment for failed partitions

void doCostSensitivePartitioning();

Fig. 7. Major APIs

current worker to the new one.
Loading partitions. After the master computes the partition

assignment, it writes the partition-to-slave mapping to the
zookeeper. Since all slaves are listening to the changes of
this mapping information, every slave can fetch and parse this
mapping and then load the corresponding failed partitions from
the latest checkpoint if necessary. Note that in the checkpoint,
partitions residing in the same slave are stored in the same file
named with the slave host name, and within each file, there
is a pointer to indicate which offset a partition starts. In this
way, a slave can quickly load a partition using this implicit
two-level index.

Performing computation. For recomputation, every
slave invokes the function processGraphPartitions()

to execute the vertex compute function, and invokes
sendMessageRequest() to forward messages. During
recovery, we adjust these two functions to avoid unnecessary
computation and communication, as follows.
(1) Every slave iterates over the partitions using func-
tion processGraphPartitions() and check whether
PartitionOwner.getRestartSuperstep() is less than
the current superstep. If so, the slave loops over all the vertices
residing in the partition and perform computation by invoking
Vertex.Compute();
(2) During the computation from superstep C + 1 to sf , a
message is omitted if it is sent to a vertex residing in a partition
whose restart superstep is less than the current superstep;
(3) At the end of each superstep, every slave loads its
locally logged messages. For supersteps in [C + 1, sf ], only
messages to the partitions whose restart supersteps are less
than the current superstep are forwarded. For superstep sf , all
the messages are sent via sendMessageRequest() to the
corresponding slaves.

6 EXPERIMENTAL STUDIES

We compare our proposed recovery method with the
checkpoint-restart method on top of Giraph graph processing
engine. We use version-1.1.0 of Giraph that is available in [1].

6.1 Experiment Setup
The experimental study was conducted on our in-house cluster
with 42 compute nodes, each of which is equipped with one
Intel X3430 2.4GHz processor, 8GB of memory, two 500GB
SATA hard disks. All the nodes are hosted on two racks. The

TABLE 1
Dataset Description

Dataset Data Size #Vertices #Edges #Partitions
Forest 2.7G 58,101,200 0 160
LiveJournal 1.0G 3,997,962 34,681,189 160
Friendster 31.16G 65,608,366 1,806,067,135 160

nodes within one rack are connected via 1 Gbps switch and the
two racks are connected via a 10 Gbps cluster switch. On each
compute node, we installed CentOS 5.5 operating system, Java
1.6.0 with a 64-bit server VM and Hadoop 0.20.203.0. Giraph
runs as a Map-only job on top of Hadoop, hence we made
the following changes to the default Hadoop configurations:
(1) the size of virtual memory was set to 4GB; (2) each node
was configured to run one map task.

6.2 Benchmark Tasks and Datasets
We study the failure recovery over three benchmark tasks: k-
means, semi-clustering [21] and PageRank. We set k = 100 in
k-means. We port the implementation of semi-clustering from
Hama [2] into Giraph and use the same configurations: each
cluster contains at most 100 vertices, a vertex is involved in
at most 10 clusters, and the boundary edge score factor is set
to 0.2. Without loss of generality, we run all the tasks for
20 supersteps and perform a checkpoint at the beginning of
superstep 11. For all experiments, the results are averaged over
ten runs. We evaluate benchmark tasks over a vector dataset
and two real-life graphs3, as described in Table 1.
• Forest. Forest dataset4 predicts forest cover type from
cartographic variables. It originally contains 580K objects,
each of which is associated with 10 integer attributes. We
enlarge the size of Forest by 10X using the data generator
from [20].
• LiveJournal. LiveJournal is an online social networking and
journaling service. It contains 4 million vertices (users) and 70
million directed edges (friendships between users).
• Friendster. Friendster is an online social networking and
gaming dataset with 60 millions vertices and 1 billion edges.

We compare our proposed partition-based recovery method
(PBR), with the checkpoint-restart recovery method (CBR)
over two metrics: recovery time and communication cost.
For PBR, we also evaluate the effectiveness of our logging
compression scheme, which we refer to as PBR-C.

6.3 k-means
We first study the overhead of logging outgoing messages.
Figure 8(a) shows the running time. PBR and PBR-C take
almost the same time as CBR. This is because in k-means
tasks, there is no outgoing messages among different vertices,
and in this case, PBR and PBR-C perform exactly the same as
CBR. Another interesting observation is that the checkpointing
superstep 10 does not incur higher running time compared with
other supersteps. This is because compared with computing the
new belonging cluster for each observation, the time of doing
checkpointing is negligible.

We then evaluate the performance of recovery methods for
single node failures by varying the failed superstep from 11 to

3. http://snap.stanford.edu/data/index.html
4. http://archive.ics.uci.edu/ml/datasets/Covertype
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Fig. 10. Communication Cost of Semi-clustering

19. Figure 8(b) plots the results. The recovery time of all three
methods increases linearly when the failed superstep varies.
Since there are no messages passing among different workers,
computing the new belonging nodes for failed partitions can be
accelerated by using all available workers, i.e., recomputation
is parallelized over 40 workers for recovery. We find that PBR
and PBR-C outperform CBR by a factor of 12.4 to 25.7 and
there is an obvious gain when the failed superstep increases.
The speedup is less than 40x due to the overhead of loading
the checkpoint in the beginning of a recovery.

Next, we investigate the performance of recovery methods
for multiple node failures. The number of failed nodes is varied
from 1 to 5 and the failed superstep is set to 15. Figure 8(c)
plots the results. When the number of failed nodes increases,
the recovery time increases linearly for PBR and PBR-C while
that remains constant for CBR. No matter how many nodes
fail, CBR will redo all computation from the latest checkpoint,
while PBR and PBR-C redo the computation for observations
in the failed nodes and hence the recovery time becomes longer
with the increase of failed nodes. On average, PBR and PBR-C
outperform CBR by a factor of 6.8 to 23.9.

Finally, we focus on cascading failure by setting the first
failed superstep to 19 and varying the second failed superstep
from 11 to 18. Figure 8(d) plots the results. On average, PBR
and PBR-C can reduce recovery time by a factor of 23.8 to
26.8 compared with CBR.

6.4 Semi-clustering
Figure 9(a) plots the running time of each superstep for semi-
clustering. PBR and PBR-C takes slightly longer time than
CBR during normal job execution due to the overhead of
logging outgoing messages. PBR and PBR-C almost take the
same time. The reason, as we discussed before, is that the I/O

cost saved by compressing the logged messages is comparable
with compression cost itself. Moreover, in semi-clustering, the
size of each message from a vertex to its neighbors increases
linearly with the superstep. Hence, all three methods runs
slower in larger supersteps. In superstep 10, there is an obvious
increment in the running time due to performing a checkpoint.

Figure 9(b), 9(c), 9(d) show the results for single node
failures, multiple node failures and cascading failures under
the same settings as k-means. Basically, the trends of the
running time of PBR (PBR-C) and CBR are similar to that
in k-means. Specifically, PBR outperforms CBR by a factor
of 9.0 to 15.3 for single node failures, by a factor of 13.1 to
5.8 for multiple node failures, and by a factor of 14.3 to 16.6
for cascading failures. PBR-C outperforms PBR by a factor of
20%. PBR-C applies a lazy-decompression scheme and hence
saving the communication cost by directly transmitting the
compression messages.

Besides the benefit of parallelizing computation, we also
show the communication cost incurred by PBR, PBR-C and
CBR in Figure 10. Since messages sent to vertices residing in
healthy nodes can be omitted in PBR and PBR-C, we observe
that in multiple node failure, PBR incurs 6.5 to 37.9 times less
communication cost than CBR. For cascading failures, PBR
can reduce communication cost by a factor of 37.1 compared
with CBR. Due to the compressed messages, PBR-C can
reduce the communication cost by a factor of 1.7 to 2.4.

6.5 PageRank
To study the logging overhead for PageRank tasks, we report
the running time of every superstep in Figure 11(a). Compared
with k-means and semi-clustering, PBR and PBR-C take
slightly more time than CBR in PageRank. This is because
PageRank is evaluated over the Friendster which has a power-
law link distribution and each superstep involves a huge
number of forwarding messages that should be logged locally
via disk I/O. However, the overhead is still negligible, only 3%
increase in running time. By compressing the messages, we
can see that PBR-C can achieve 1.5% reduction of running
time due to the I/O cost reduction compared with PBR.
Due to doing checkpointing, there is an obvious increment
of running time in superstep 10. In each superstep, the
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TABLE 2
Parameter Ranges for Simulation Study

Parameter Description Range
n number of failed partitions 20, 40, 50
m number of healthy nodes 20, 40, 50
k number of partitions (or healthy nodes) with high

communication cost
2, 4, 8

γ comp-comm-ratio 0.1, 1, 10

worker basically does the same task and hence the running
time of each superstep almost remains the same. We also
evaluate the performance of recovery methods for single
node failures, multiple node failures and cascading failures.
Figure 11(b)-11(d) provide the recovery time, respectively.
Figure 12 shows the corresponding communication cost. The
performance of PBR and CBR follow the same trends as those
in semi-clustering and k-means tasks. This further verifies
the effectiveness of PBR, which parallelizes computation and
eliminates unnecessary computation and communication cost.
Due to the same reason discussed in semi-clustering, PBR-C
can reduce the communication cost by a factor of 1.68 to 2.23.

6.6 Simulation Study

We perform a simulation study to evaluate the effectiveness
and efficiency of our cost-sensitive reassignment algorithm
COSTSEN in partition-based recovery. As a comparison, we
consider a random approach RANDOM by balancing compu-
tation among the nodes.
Data preparation. We investigate the effect of the following
parameters that potentially affect the performance of the
reassignment algorithms:
• n: the number of failed partitions
• m: the number of healthy compute nodes
• computation cost per failed partition during recovery
• communication cost between every two failed partitions
during recovery
• communication cost between failed partitions and healthy
compute nodes during recovery

We generate communication cost by simulating two cat-
egories of graph partitioning, random-partitioning and well-
partitioning. In random-partitioning, there is no obvious d-
ifference in the connections of two partitions lying in the
same node or across two nodes; in well-partitioning, the
number of edges connecting two partitions within the same
node is much larger than that across two nodes. For simula-
tion, we generate communication cost using two distributions
uniformly-distributed and well-distributed corresponding to
random-partitioning and well-partitioning, as follows.

1) In uniformly-distributed, the communication cost be-
tween two failed partitions and that between a healthy partition
and failed one, is uniformly drawn from the range [1, low].
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2) In well-distributed, for each failed partition, we randomly
select k failed partitions. The communication cost from the
partition to each of the selected ones is uniformly drawn
from range [1, high], and that from the partition to any other
failed partition is uniformly drawn from range [1, low]. The
communication cost between a partition and healthy node is
generated in the same way. By default, we set p, low, high
to 0.6, 100, 40000, respectively.

We generate comparable computation cost for each failed
partition based a comp-comm-ratio, γ. Let SP be the total
communication cost from healthy nodes to a failed partition
P . We use γ to adjust the ratio between the computation cost
of P and SP . The computation cost of P is randomly drawn
from the range [1, γSP ]. A larger γ implies that the job is
more computation-intensive. Table 2 summarizes the ranges
of our tuning parameters. Unless otherwise specified, we use
the underlined default values.
Measure. We measure the performance of reassignment algo-
rithms via five metrics: maximum computation cost (Comp-
Cost), total inter-node communication cost (CommCost), sum
of CompCost and CommCost (TotalCost), running time and
the number of nodes to which failed partitions are reassigned.
All the costs are measured in seconds by default.
Effects of comp-comm-ratio. Table 3 shows the results of
COSTSEN and RANDOM by varying γ in uniformly-distributed
scenario. On average, COSTSEN produces reassignments with
lower TotalCost and CommCost than RANDOM over all the
ratios. For γ = 0.1, COSTSEN outperforms RANDOM with 2x
lower TotalCost and CommCost. As γ increases, the advan-
tage of COSTSEN in TotalCost and CommCost becomes less
significant. The reason is that a larger γ makes the job more
computation-intensive; this requires more nodes to parallelize
the computation, while CommCost can hardly be reduced due
to the uniform distribution. For smaller γ (e.g., 0.1), COSTSEN
assigns failed partitions to a small number of nodes (< 5)
due to insignificant CompCost, hence it reports reassignments
with higher CompCost than RANDOM. For larger γ (e.g., 10),
COSTSEN performs similarly as RANDOM in terms of the
three costs, but it requires 2x fewer nodes for recovery. This
saving is desirable in practice. We observe similar results for
the well-distributed scenario and omit the analysis.
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TABLE 3
Varying Comp-comm-ratio γ (uniformly-distributed)

γ 0.1 1 10
RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 0.4 8.2 3.9 5.8 38.9 38.9
CommCost 152.6 75.2 152.4 143.5 152.6 147.1
TotalCost 153.0 83.4 156.3 149.3 191.5 186.0
Used nodes 40 1 40 19.9 40 24.1

TABLE 4
Varying the Number of Partitions (or Healthy Nodes) with High

Communication Cost k (well-distributed)
k 2 4 8

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN
CompCost 3.9 17.4 3.9 46.0 3.8 76.7
CommCost 1603.5 690.5 2830.1 1422.5 5190.9 2558.8
TotalCost 1607.4 707.9 2834.0 1468.5 5194.7 2635.5
Used nodes 40 11.75 40 7.63 40 2.79

Effects of High Communication Partition (Healthy Node)
Number. Table 4 shows the results of both methods when
we vary the number of partitions (nodes) with high commu-
nication cost (k). For all values of k, COSTSEN outperforms
RANDOM with 2x lower TotalCost and CommCost. COSTSEN
produces reassignments with higher CompCost which is rela-
tively insignificant compared with CommCost. Furthermore,
COSTSEN always involves fewer nodes for recovery. For
k = 8, it uses 14x fewer nodes than RANDOM.
Effects of the number of failed partitions. Table 5 provides
the results by varying the number of failed partitions (n).
For each n, COSTSEN outperforms RANDOM by 2.5x lower
TotalCost and CommCost. Again, the reassignments reported
by COSTSEN require higher CompCost, which is much smaller
than CommCost. Furthermore, COSTSEN uses 3x fewer nodes
for recovery. Figure 13(a) shows the running time of COST-
SEN. It requires less than 250ms to generate reassignments.
The running time increases quadratically with n.
Effects of the number of healthy nodes. Table 6 provides
the results by varying the number of healthy nodes (m).
COSTSEN produces reassignments with 3x lower TotalCost
and CommCost over all values of m. Furthermore, it employs
fewer healthy nodes for recovery. For larger m (e.g., 40, 50),
the number of nodes involved in the reassignments from
COSTSEN is 3x fewer than RANDOM. Figure 13(b) shows the
running time of COSTSEN. The running time increases linearly
with the number of healthy nodes. For m = 50, COSTSEN
generates reassignments over 40 nodes within 250ms.

7 RELATED WORK

Our work is related to: (i) methods for accelerating the failure
recovery and (ii) graph partitioning methods.
Accelerating failure recovery. Failure recovery approaches
are typically split into three categories: checkpoint-restart, log-
based and hybrid approaches [11]. Most popular distributed
graph processing systems such as Giraph [1], GraphLab [19],

TABLE 5
Varying the Number of Partitions n (well-distributed)

n 20 40 50
RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN

CompCost 3.7 14.7 3.8 17.8 4.6 18.8
CommCost 775.3 291.9 1605.2 689.0 2005.0 876.9
TotalCost 779.0 306.6 1609.0 706.8 2009.6 895.7
Used nodes 20 7.05 40 11.69 40 15.19

TABLE 6
Varying the Number of Healthy Nodes m (well-distributed)
m 20 40 50

RANDOM COSTSEN RANDOM COSTSEN RANDOM COSTSEN
CompCost 5.9 20.5 3.9 15.6 3.8 16.5
CommCost 1463.3 572.1 1582.0 686.8 1617.9 695.8
TotalCost 1469.2 592.6 1585.9 702.4 1621.7 712.3
Used nodes 20 10.21 40 12.27 50 12.97

PowerGraph [12], GPS [23], Mizan [16] adopt checkpoint-
restart recovery. Pregel [21] proposes confined recovery which
is a hybrid mechanism of the checkpoint-restart and log-
based recovery. Specifically, only the newly-added node that
substitutes the failed one has to rollback and repeats the
computations from the latest checkpoint. GraphX [29] adopts
log (called lineage) based recovery, and utilizes resilient
distributed datasets (RDD) to speedup failure recovery. How-
ever, when a node fails, graph data lying in this node still
need to be recovered. Checkpointing and logging operations
are the backbones of recovery methods [6], [7], [8]. Many
works focused on accelerating checkpoint-restart or the log-
based recovery [11]. Location and replication independent
recovery proposed by Bratsberg et al. employed replicas for
recovery [9]. The algorithm partitions the data into fragments
and replicates fragments among multiple nodes which can
takeover in parallel upon failures. However, the recovery task
for the failed node is still performed in a centralized manner
after the node finishes internal recovery. Instead, we focus
on accelerating the task of recovering by parallelizing the
computations required to recompute the lost data. Another
recovery method that presents similarities with ours is present
in RAMCloud [22]. RAMCloud backs up the data across
many distributed nodes, and during recovery, it reconstructs in
parallel the lost data. However, as RAMCloud is a distributed
storage, it does not need to track the dependencies among the
scattered data. In contrast, in distributed processing systems,
understanding how the program dependencies affect both
the communication and the computation time is of utmost
importance [4].
Graph partitioning. METIS [15], which performs offline par-
titioning of a distributed unstructured graph, is most relevant to
our approach for partitioning the failed subgraph. Several ex-
tensions have been proposed for power-law graphs [3], multi-
threaded graph partitioning [17] and dynamic multi-constraint
graph partitioning [24]. In practice, it has been adopted in other
distributed graph processing systems such as PowerGraph.
However, METIS does not partition based on a cost model
that includes both communication and computation.

8 CONCLUSION

This paper presents a novel partition-based recovery method
to parallelize failure recovery processing. Different from tra-
ditional checkpoint-restart recovery, our recovery method dis-
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tributes the recovery tasks to multiple compute nodes such
that the recovery processing can be executed concurrently.
Because partition-based failure recovery problem is NP-Hard,
we use a communication and computation cost model to
split the recovery among the compute nodes. We implement
our recovery method on the widely used Giraph system and
observe that our proposed parallel failure recovery method
outperforms existing checkpoint-restart recovery methods by
up to 30 times when using 40 compute nodes.
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