
Testing Graph Database Systems with Graph-State Persistence
Oracle

Shuang Liu
Key Laboratory of Data Engineering

and Knowledge Engineering (MOE),

School of Information, Renmin

University of China

Beijing, China

Shuang.Liu@ruc.edu.cn

Junhao Lan
College of Intelligence and

Computing, Tianjin University

Tianjin, China

lanjunhao@tju.edu.cn

Xiaoning Du
Monash University

Monash, Australia

Xiaoning.Du@monash.edu

Jiyuan Li
College of Intelligence and

Computing, Tianjin University

Tianjin, China

lijiyuan@tju.edu.cn

Wei Lu∗

Key Laboratory of Data Engineering

and Knowledge Engineering (MOE),

School of Information, Renmin

University of China

Beijing, China

lu-wei@ruc.edu.cn

Jiajun Jiang
College of Intelligence and

Computing, Tianjin University

Tianjin, China

jiangjiajun@tju.edu.cn

Xiaoyong Du
Key Laboratory of Data Engineering

and Knowledge Engineering (MOE),

School of Information, Renmin

University of China

Beijing, China

duyong@ruc.edu.cn

Abstract

Graph Database Management Systems (GDBMSs) store data in a

graph format, facilitating rapid querying of nodes and relationships.

This structure is particularly advantageous for applications like

social networks and recommendation systems, which often involve

frequent writing operations—such as adding new nodes, creating

relationships, or modifying existing data—that potentially intro-

duce bugs. However, existing GDBMS testing approaches tend to

overlook these writing functionalities, failing to detect bugs arising

from such operations. In this paper we present GraspDB, the �rst

metamorphic testing approach speci�cally designed to identify bugs

related to writing operations in graph database systems. GraspDB

employs the Graph-State Persistence oracle, which is based on

the Labeled Property Graph Isomorphism (LPG-Isomorphism) and

Labeled Property Subgraph Isomorphism (LPSG-Isomorphism) re-

lations. We also develop three classes of mutation rules aimed at

engaging more diverse writing-related code logic. GraspDB has
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successfully detected 77 unique, previously unknown bugs across

four popular open source graph database engines, among which 58

bugs are con�rmed by developers, 43 bugs have been �xed and 31

are related to writing operations.
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• Software and its engineering→ Software testing and debug-

ging.
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1 Introduction

In recent years, Graph Database Management Systems (GDBMSs)

- [33] have been widely used in various applications where data is

represented by vertices and edges, such as social networks [15, 38],

knowledge graphs [13], and recommendation systems [12, 28, 40].

GDBMSs o�er e�cient data storage and querying capabilities, en-

abling these applications to ful�ll user requests with high through-

put, thereby becoming a cornerstone of application driven by graph
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data. According to industry reports, the global market size for graph

databases is projected to reach $2.9 billion in 2023 [5], underscoring

the growing demand for such systems. Among the various GDBMS

implementations, Neo4j [10] stands out as the most popular and

widely adopted graph data platform, trusted by over 1,000 organiza-

tions, including industry leaders such as Adobe, eBay and UBS [36]

Similar to other databasesmanagement systems (DBMSs), GDBM

-Ss accept user queries as input and return the corresponding query

results. These user queries convey requests to store, manipulate, or

retrieve data from the databases. To ensure better reliability and

e�ciency, DBMSs demand sound and optimized implementations of

transaction management, indexing and storage management, query

optimization, and concurrency control. The combination of these

factors, coupled with the inherent complexity of database systems,

renders their implementation susceptible to bugs. Recognizing this

challenge, the software testing community has devoted increasing

attention to uncovering bugs in DBMS, with a particular focus on

GDBMSs [20–22, 41].

In order to reveal the deeply buried logic bugs in GDBMSs, one

of the biggest challenges lies in devising powerful test oracles. As

a countermeasure, di�erential testing [20, 41] and metamorphic

testing [21, 22, 25, 42] play an crucial role in existing works on

GDBMS testing. The insight behind di�erential testing is that di�er-

ent GDBMS implementations should return the same results when

dealing with identical user requests. However, di�erent GDBMSs

may adopt di�erent graph query languages, such as Cypher [18]

and Gremlin [34], which limits the application of di�erential testing

approaches to a speci�c group of implementations that support the

same query language. GDSmith [20] and Grand [41] are the state-

of-the-art di�erential testing approaches for GDBMSs, respectively

supporting Cypher and Gremlin. Another factor that in�uences

the e�ectiveness of di�erential testing is the absence of standard

speci�cations for graph query languages, leading to di�erent im-

plementation choices even for the same query language. Failing to

carefully verify whether two implementations adhere to the same

speci�cation also result in false alarms [21].

In contrast, metamorphic testing approaches o�er more precise

oracles for testing GDBMSs, and a body of works surge in this

line, including GDBMeter [22], GraphGenie [21], and GRev [25].

They have particularly focused on the data retrieval functional-

ity of GDBMSs and designed metamorphic relations that capture

whether and how the query results are a�ected when particular

transformations are made to the matching conditions. For example,

GRev proposes representing the matching patterns with Abstract

Syntax Graph (ASG) and developing an algorithm to extract equiv-

alent matching conditions from the graph, which describes exactly

the original pattern but with a di�erent set of conditions, thereby

rewriting the queries. If the query results di�er, a bug is caught.

Additionally, GAMERA [42] proposes metamorphic relations based

on the intrinsic properties of graphs, including symmetric relations

such as connectivity, and inverse relations such as ancestor and

descendant. We can observe that existing works have exclusively

focused on the pattern-matching and data-retrieving functional-

ities of GDBMSs, leaving their capabilities to writing operations,

e.g., write, update, and delete data, rarely examined. Hence, we

make the �rst endeavor to test how well the GDBMSs handle

queries with writing operations.

1 WITH 1 AS a WHERE NULL CREATE (a);

2 −− Exp e c t e d B ehav i o r : 0 node c r e a t e d

3 −−Ac tua l B e ha v i o r : 1 node c r e a t e d

Figure 1: A query with CREATE generated by our approach

that triggers a non-crashing bug in RedisGraph.

Bugs may or may not cause crashes. A reliable GDBMS imple-

mentation shall never crash for any user query. This also applies to

how it processes queries with writing operations.

Figure 1 shows a query with CREATE operation, which is gen-

erated by our approach and triggers such a non-crashing bug in

RedisGraph. The bug was detected using the query pair in Fig-

ure 1 and its mutated query "WITH 1 AS a WHERE NULL WITH *

CREATE (a)" (via applying mutation Rule14 in Table 2), with our

Graph-State Persistent Oracle. There are three parts in the query.

WITH 1 AS a is a projecting clause, which passes a record with

variable a with value 1 to the next part. WHERE NULL �lters the

results from the WITH clause. In this case, the condition NULL eval-

uates to false, and no record is eligible for the following clause.

Thus, the CREATE (a) clause will not be ignited, and no nodes

shall be created. However, when RedisGraph executes this query, it

creates one node. The bug is in some sense “silent” as it does not

show explicit error messages and only checking on the database

status can expose the bug. Note that this bug can not be found by

existing approaches for two reasons. Firstly, existing approaches

do not generate queries with update-related operations and thus

cannot produce queries with CREATE. Secondly, the oracle hired

by existing approaches does not specify properties on the graph

state and thus cannot capture the bug.

To address the challenges, we propose an enhanced graph-state

persistent oracle to detect bugs from writing operations, using the

Labeled Property Graph Isomorphism (LPG-Isomorphism) and La-

beled Property Subgraph Isomorphism (LPSG-Isomorphism) meta-

morphic relations. We propose three classes of mutation rules de-

signed to increase the likelihood of triggering bugs by adding writ-

ing clauses or modifying existing queries with writing operations,

thereby engaging more diverse writing-related code logic. These

mutation rules are also designed guided by the LPG-Isomorphism

and LPSG-Isomorphism relations to ensure the execution correct-

ness of the mutated query and the base query pairs veri�able with

these isomorphism relations. We conduct experiments with 4 pop-

ular GDBMSs and detect 77 bugs, among which 58 bugs are con-

�rmed and 43 have been �xed. There are 31 con�rmed bugs related

to writing operations, and thus cannot be detected by all existing

approaches that test GDBMS.

In summary, we make the following contributions:

• We propose the �rst metamorphic testing approach for de-

tecting writing-related bugs in GDBMSs by employing the

Graph-State Persistence oracle based on the Labeled Prop-

erty Graph Isomorphism (LPG-Isomorphism) and Labeled

Property Subgraph Isomorphism (LPSG-Isomorphism) rela-

tions. We propose three classes of mutation rules to engage

more diverse writing-related code logic.

• We conduct experiments on four commercial GDBMSs. Our

approach detected 77 previous unknown bugs. 58 of them
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(a) A labeled property graph example

(b) A Cypher query example

Figure 2: Labeled property graph and Cypher query exam-

ples.

Table 1: Clauses of Cypher Language [9]

Reading clauses := MATCH|OPTIONAL MATCH

Writing clauses := CREATE|MERGE|FOREACH|SET|REMOVE|(DETACH) DELETE

Projecting clauses:= WITH|UNWIND|RETURN

Subquery clauses := CALL

have been con�rmed by the developers, and 43 have been

�xed. Among them, there are 11 logic bugs, 32 errors, 13

crashes and 2 inconsistencies with Cypher documentation.

Additionally, 31 bugs cannot be triggered without database

writing operations.

• We have implemented our method as a practical tool called

GraspDB and the source code is available at https://doi.org/

10.5281/zenodo.12670528.

2 Preliminary

2.1 Labeled Property Graph and Cypher

In this section, we provide preliminaries on the labeled property

graph model and the Cypher language [18].

Labeled property graph model (LPG) is a data model for repre-

senting and storing data in GDBMS. Neo4j, MemGraph, RedisGraph

and AgensGraph are examples of GDBMSs that use the labeled

property graph model. A labeled property graph has a set of nodes

and relationships (directed edges that connect nodes). Each node

and edge (relationship1) can have a set of properties, which are

key-value pairs and are usually speci�ed using JavaScript Object

Notation (JSON). Each node has a set of unique labels, which are

tokens that describe the type of the node. Each edge has one label,

indicating the edge type. Figure 2(a) shows an example labeled

property graph. The LPG contains three nodes, two labeled with

person and one labeled with movie, and two edges, labeled with

direct and watch, respectively. The person nodes have two prop-

erties, i.e., name and gender. The movie node has two properties,

i.e., title and duration. The direct and watch edges are associated

with properties publish and year, respectively.

Cypher [18] is an declarative programming language originally

developed for the Neo4j graph database [10]. Cypher is easy to read

1We use edge and relationship interleaving in the following.

and write due to its declarative nature, and it is known for its ex-

pressive and e�cient way to handle patterns within graphs, making

it well-suited for complex queries. Pattern matching is conducted to

retrieve subgraphs from a property graph in Cypher. In each Cypher

query, clauses are chained together and executed sequentially. Each

Cypher clause takes the property graph and the intermediate re-

sults of the previous clause as input, and output the intermediate

results to the next clause. Table 1 lists the four types of clauses

de�ned in Cypher, including reading clauses, writing clauses, pro-

jecting clauses and subquery clauses. Figure 2(b) shows an exam-

ple Cypher query that aims to �nd the female viewers of movies

directed by Frank Darabont. In this query, (a:person), (:movie)

and (b{gender:’female’}) are node patterns, -[:direct]-> and

<-[:watch]- are relationship patterns, a.name = ’Frank Darabont’

is an expression. The name of the �eld can be renamed by using AS.

Unlike the Structured Query Language (SQL) [1], there is no

standard speci�cation for graph query languages and thus there

are various query languages for GDBMS [27, 35]. Cypher [27],

originally contributed by Neo4j [10], is widely recognized with the

wide adoption of Neo4j, and it is used by over 10 other popular

databases including RedisGraph [11] and Memgraph [8]. Cypher

is regarded as the most widely adopted, fully-speci�ed, and open

query language for property graph database engines [17, 18]. Some

graph databases that natively support other graph query languages

(e.g., Gremlin [34]) are also compatible with Cypher queries via

translation tools (e.g., Cypher for Gremlin [3]).

2.2 Graph Isomorphism

We provide preliminaries of de�nitions on the isomorphism of

graphs, which serves as the basis for our graph-state persistence

metamorphic relations, in this section.

De�nition 2.1 (Graph Isomorphism [37]). Given two graphs G=(V,

E) and G’=(V’, E’), where V and V’ are node sets and E and E’ are

edge sets. G and G’ are called isomorphic if there exist an edge-

preserving bijection mapping 5 : + → + ′, such that ∀D, E ∈ + ,

(D, E) ∈ � i� (5 (D), 5 (E)) ∈ �′. We denote G ≃ G’ if G and G’ are

isomorphic graphs.

De�nition 2.2 (Labeled Graph [23]). A labeled graph is de�ned

as G=(V, E, !, ;+ , ;� ), where V is the node set, E is the edge set,

! is the set of node labels and edge labels. ;+ : + → P(!)is the

mapping from node to a set of labels (P(!) is the power set of !),

and ;� : � → ! is the mapping from edge to labels.

De�nition 2.3 (Labeled Graph Isomorphism [19]). Given two la-

beled graphs G=(V, E, !, ;+ , ;� ) and G’=(V’, E’, !′, ; ′
+
, ; ′
�
), G and G’

are isomorphic if (1) there exists a bijective function 5 : + → + ′,

such that ∀D, E ∈ + , (D, E) ∈ � i� (5 (D), 5 (E)) ∈ �′; (2) ∀D ∈ + ,

;+ (D) = ; ′
+
(5 (D)); (3) ∀D, E ∈ + , ;� (D, E) = ; ′

�
(5 (D), 5 (E)). We de-

note G ≃!� G’ if G and G’ are isomorphic labeled graphs.

De�nition 2.4 (Subgraph [37]). Given two graphs G=(V, E), G’=(V’,

E’), where V and V’ are node sets and E and E’ are edge sets, G is a

subgraph of G’ if+ ⊆ + ′ and � = �′ ∩ (+ ×+ ). We denote� ⊆ � ′

if G is a subgraph of G’.

De�nition 2.5 (Subgraph Isomorphism [37]). Graph G=(V, E) is

subgraph isomorphic to graph G’=(V’, E’) if ∃( such that ( ⊆ � ′

and ( ≃ � . We denote G ∼ G’ if G is subgraph isomorphic to G’.
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(a) (b) (c)

Figure 3: Labeled Property Graph Examples

De�nition 2.6 (labeled Subgraph [32]). Given two labeled graphs

G=(V, E, !, ;+ , ;� ) and G’=(V’, E’, !, ; ′
+
, ; ′
�
), G is a subgraph of G’

if (1) there is an injective mapping f: + → + ′ such that ∀D, E ∈ + ,

(D, E) ∈ � ⇒ (5 (D), 5 (E)) ∈ �′; (2) ∀D ∈ + , ;+ (D) = ; ′
+
(5 (D)); and

(3) ∀D, E ∈ + , ;� (D, E) = ; ′
�
(5 (D), 5 (E)). We denote � ′ ⊆!� � if G’

is a subgraph of G.

De�nition 2.7 (Labeled Subgraph Isomorphism [6]). LabeledGraph

G=(V, E, !, ;+ , ;� ) is subgraph isomorphic to labeled graph G’=(V’,

E’, !, ; ′
+
, ; ′
�
) if ∃( such that ( ⊆!� � and ( ≃!� � ′. We denote G

∼!� G’ if G is labeled subgraph isomorphic to G’.

3 Isomorphism Relations of Labeled Property
Graph

Inspired by the graph isomorphism relations, we de�ne isomor-

phism relations on labeled property graphs, which serve as the

theory support of our oracle.

De�nition 3.1 (Labeled Property Graph). A labeled property graph

is de�ned as G=(V, E, !, % , ;+ , ;� , 5+ , 5� ), where V, E are the set of

nodes and edges;! is the set of labels for nodes and edges; % is the set

of properties associated with nodes and edges. ;+ : + → P(!) is the

mapping from node to a set of labels (P(!) is the power set of !), and

;� : � → ! is the mapping from edge to labels. 5+ : + → P(%) is the

mapping from node to a set of node properties and 5� : � → P(%)

is the mapping from edge to a set of edge properties.

Figure 3(a) is an example labeled property graph with 5 nodes

and 5 edges. Each node is associated with a set of labels, e.g., {L1}

for node 1 and a set of properties, e.g., {K1:2} for node 1. Each edge

is associated with 1 unique label (or type), e.g., r3 for edge (2, 3)

and a set of properties, in this case an empty set for edge (2, 3).

De�nition 3.2 (Labeled Property Graph Isomorphism). Given two

labeled property graph G=(V, E, !, % , ;+ , ;� , 5+ , 5� ) and G’=(V’, E’,

!′, % ′, ; ′
+
, ; ′
�
, 5 ′
+
, 5 ′

�
), G and G’ are isomorphic if (1) there exists a

bijective mapping 5 : + → + ′, such that ∀D, E ∈ + , (D, E) ∈ � i�

(5 (D), 5 (E)) ∈ �′; (2) ∀D ∈ + , ;+ (D) = ; ′
+
(5 (D)), 5+ (D) = 5 ′

+
(5 (D));

(3) ∀D, E ∈ + , ;� (D, E) = ; ′
�
(5 (D), 5 (E)), 5� (D, E) = 5 ′

�
(5 (D), 5 (E)).

We denote G ≃!%� G’ if G and G’ are isomorphic labeled graphs.

De�nition 3.3 (Labeled Property Subgraph Isomorphism). Given

two labeled property graphs G=(V, E, !, % , ;+ , ;� , 5+ , 5� ) and G’=(V’,

E’, !′, % ′, ; ′
+
, ; ′

�
, 5 ′

+
, 5 ′

�
), G is subgraph isomorphic to G’ if (1)

there is an injective mapping f: + → + ′ such that ∀D, E ∈ + ,

(D, E) ∈ � ⇒ (5 (D), 5 (E)) ∈ �′; (2) ∀D ∈ + , ;+ (D) = ; ′
+
(5 (D))

Figure 4: Overview of GraspDB

and 5+ (D) = 5 ′
+
(5 (D)); (3) ∀D, E ∈ + , ;� (D, E) = ; ′

�
(5 (D), 5 (E)),

5� (D, E) = 5 ′
�
(5 (D), 5 (E)). We denote G ∼!%� G’ if G is labeled

property subgraph isomorphic to G’.

A labeled property graph isomorphism is a bijective relation be-

tween two labeled property graphs, requesting two labeled property

graphs to be structurally isomorphic, and the corresponding nodes

and edges have identical labels and properties. Labeled property

subgraph isomorphism de�nes an injective relation between two

labeled property graphs, requesting two labeled property graphs

to be structurally subgraph isomorphic, and the corresponding

nodes and edges have identical labels and properties. The LPG in

Figure 3(b) is isomorphic to that in Figure 3(a), and the LPG in Fig-

ure 3(c) is a subgraph isomorphic to that in Figure 3(a) according to

our de�nitions. The two isomorphism relations on labeled property

graphs serve as the theoretical basis for our oracle.

4 Approach

There are two main technical challenges for detecting bugs intro-

duced by writing operations in graph databases. The �rst challenge

is to precisely detect the bugs with low false positives. Since the

bugs triggered by writing operations may modify the underlying

graph database and the bug symptoms may not be re�ected by

query results, as illustrated in Figure 1 (none of existing graph

database testing approaches is able to detect that kind of bugs). The

second challenge is to generate test cases which can e�ectively

trigger bugs arising from writing operations.

To address the �rst challenge, we propose the graph-state per-

sistent oracle, which is based on two metamorphic relations, i.e., la-

beled property graph isomorphism (LPG-isomorphism) and labeled

property subgraph isomorphism (LPSG-isomorphism). To address

the second challenge, we have developed three categories of mu-

tation rules, i.e., add writing clauses, modify writing clauses and

modify return clauses, which are guided by the LPG-Isomorphism

and LPSG-Isomorphism metamorphic relations. These mutation

rules incorporate a variety of writing-related syntax features into

the test cases, aiming to engage more writing-related code logic

and consequently uncover more bugs. Additionally, we proactively

generate test cases that incorporate writing clauses and sub-clauses.

The writing clauses modify the graph and are likely to expose

bugs, while the sub-clauses enhance the complexity of the test

cases, increasing the likelihood of triggering bugs. We apply the

mutation rules on base queries to obtain pairs of base and mutated
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Table 2: Mutation Rules, with Colored Deletion and Addition

ID Type
Oracle

Transformation Example Query
Graph Result

01 AWC ≃!%� = Create nodes/edges and then delete CREATE (a) CREATE p=()-[:T]→() DELETE p RETURN a

02 AWC ≃!%� = Add a property and then delete CREATE (a) SET a.k=1 REMOVE a.k RETURN a

03 AWC ≃!%� = Remove a non-existent property CREATE (a) REMOVE a.k RETURN a

04 AWC ≃!%� = Delete a non-existent node/edge CREATE (a) DELETE NULL RETURN a

05 AWC ∼!%� = Create nodes/edges CREATE (a) CREATE ()-[:T]→() RETURN a

06 AWC ∼!%� = Delete existent nodes/edges CREATE (a) DELETE a RETURN a

07 AWC ≃!%� = Create path incrementally CREATE (a)-[:T]→(b)-[:T]→(c)(a)-[:T]→(b) CREATE (b)-[:T]→(c) RETURN a

08 AWC ≃!%� = Delete path incrementally CREATE p=()-[:T]→() DELETE pFOREACH(f in nodes(p)|DETACH DELETE f)

09 MWC ≃!%� = Add path variable CREATE p=(a)-[:T]->() RETURN a

10 MWC ≃!%� = Add node/edge variable CREATE (a)-[:T]->(b) RETURN a

11 MWC ≃!%� = Reverse the direction of the path CREATE (a)-[:T]→(b)(b)←[:T]-(a) RETURN a

12 MWC ≃!%� = Wrap writing clause with FOREACH/CALL FOREACH(f in [1]|CREATE p=(a)-[:T]→()) RETURN 1

13 MWC ≃!%� = Add redundant UNWIND clause before writing clause UNWIND [1] as l CREATE p=(a)-[:T]→() RETURN a

14 MWC ≃!%� = Add redundant WITH clause before writing clause WITH * CREATE p=(a)-[:T]→() RETURN a

15 MWC ≃!%� = Add redundant OPTIONAL MATCH clause before writing clause OPTIONAL MATCH ()-[:TYPE]-() CREATE p=(a)-[:T]→() RETURN a

16 MWC ∼!%� NA Increase the size of graph CREATE (a)-[:T]→(c)-[:T]→(b) RETURN a

17 MWC ∼!%� NA Decrease the size of graph CREATE (a)-[:T]→(c) RETURN a

18 MRC ≃!%� ⊆ Add records to return result CREATE (a) RETURN 1 as n UNION RETURN 2 as n

19 MRC ≃!%� ⊇ Return limited records CREATE (a)-[:T]→(c) RETURN a LIMIT 0

20 MRC ≃!%� ⊇ Return distinct records CREATE (a)-[:T]→(c) RETURN DISTINCT a

21 MRC ≃!%� = Change the order of return result CREATE (a)-[:T]→(c) RETURN a ORDER BY a DESC

22 MRC ≃!%� = Add a column to return result CREATE (a)-[:T]→(c) RETURN a, c

23 MRC ≃!%� = Wrap return result in a list CREATE (c) RETURN [c][0]

24 MRC ≃!%� = Wrap return result with reduce() CREATE (c) RETURN reduce(a = c, b in [], a)

The mutated graph is LPSG-isomorphic to the base graph in the case of rule 6 and rule 17.
NA signi�es that the relationship between the return results before and after mutation is unknown, and we do not compare the return results for this mutation rule.

queries, the execution correctness of which can be veri�ed with

the metamorphic relations.

The overview of GraspDB is shown in Figure 4, which consists

�ve steps. The �rst two steps are graph database and query genera-

tion. GraspDB utilizes the graph database generation functionality

of GDSmith [20] and improves it to generate base queries with all

four types of clauses, in which enable generating writing clauses

and subquery clauses could engage writing-related, complex code

processing logic. Then, GraspDB mutates a base query based on

three classes of mutation rules, i.e., add writing clause, modify

writing clause, modify return clause, and obtains the follow-up mu-

tated queries, such that the execution correctness of the base query

and mutated query pairs can be veri�ed with the metamorphic

relations. In the fourth step, the pair of base query and mutated

query is executed separately on two identically con�gured GDBMS

instances, during which errors and crashes are directly detected.

Finally, GraspDB detects logic bugs by comparing the graph data-

base instances modi�ed by the executed query pairs, as well as the

return results (to reduce false negatives). Note that once there is

an inconsistency in the two graph database instances, GraspDB

will clear the two databases by deleting all nodes and go back to

the �rst step, so as to prepare consistent execution environments

for the next query pairs.

4.1 Query Generation

To detect bugs introduced by writing operations in GDBMSs, we

need to generate initial graphs and semantically correct queries

which contain update clauses. We improve GDSmith [20], a syntax-

based GDBMS test case generation tool, for property graph and

query generation by incorporating writing clauses and the cor-

responding patterns and expressions. Following the work�ow of

GDSmith, we conduct skeleton generation, pattern generation and

expression generation, adhering strictly to grammar rules of Cypher.

For skeleton generation, we refer to the syntax and semantics of

Cypher and add skeletons related to writing clauses and subquery

clauses. For pattern generation, we record the paths that are added

to the initial graph due to writing clauses such as CREATE and MERGE,

and proactively generate patterns based on those paths so as to

improve the probability of retrieving the newly added nodes and

edges. For expression generation, we extend GDSmith to add three

types of expressions, i.e., function expressions (including function

nesting), subquery expressions (e.g., EXISTS subquery and COUNT

subquery) and some constant value expressions such as paths, lists,

dictionaries. We also add some Cypher features, such as UNION

keyword, CASEWHEN keyword, Pattern comprehension, List com-

prehension andMap projection, that GDsmith doesn’t support, with

the purpose of increasing diversity of the generated queries. We

follow Cypher syntax and semantics, and the generation process of

GDSmith to generate syntax and semantic correct base queries.

4.2 Mutation Rules

In this section, we provide the details of mutation rules correspond-

ing to our metamorphic relations. In particular, we propose three

classes of mutation rules, i.e., add writing clauses (AWC), modify

writing clauses (MWC), and modify return clauses (MRC), based on

the strategies that used. The mutation rules are guided by the meta-

morphic relations we de�ned in section 3, with Labeled Property

Graph Isomorphism (LPGI) marked ≃!%� and Labeled Property

Subgraph Isomorphism (LPSI) marked ∼!%� in Table 2.

Add Writing Clause (AWC) Rules. This class of rules add writ-

ing clauses to an existing query, with the purpose of generating

queries that trigger writing related functionalities and thus uncover
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writing-related bugs. The AWC rules are derived from both the

LPG-isomorphism and LPSG-isomorphism relations, where they

transform a based query into a mutated query that create an iso-

morphic labeled property graph or an isomorphic labeled property

subgraph. For instance, rule 01 in Table 2 is an AWC mutation rule,

which transforms the base query into a mutated query that create

an isomorphic LPG with that created by the base query, by creating

a path p and delete it immediately. Rule 05 transforms the base

query into a mutate query that create a LPG G’, which satis�es

� ⊆!%(� � ′, where G is the LPG created by the base query.

Modify Writing Clause (MWC) Rules. This class of rules modi-

�es existing writing clauses, either directly by modifying the path/-

pattern in a writing clause, or indirectly by adding clauses which

potential a�ect the execution plan of an existing writing clause. The

MWC rules are derived from both the LPG-isomorphism and LPSG-

isomorphism relations. Rule 11 in Table 2 is a MWC rule which

modi�es the create clause in the base query to obtain a mutated

query by reversing the direction of the created path. The mutated

query creates an isomorphic LPG with that created by the base

query. Rule 17 is a MWC rule which modi�es the create clause

in the base query by deleting an existing edge. The LPG created

by the mutated query is LPSG-isomorphic to the LPG created by

the base query. Rule 12 modi�es the base query by wrapping the

create clause with a foreach clause, such that the mutated query

has a di�erent query execution plan and thus potentially trigger

di�erent GDBMS code paths being tested, while the LPG created is

isomorphic to the LPG create by the base query.

Modify Return Clause (MRC) Rules. This class of rules does

not directly modify writing clauses, yet they modify the return

clause in a statement containing writing clauses, with the purpose

of introducing more diverse syntax features into the query and

thus potentially triggering more bugs. The MRC rules transform a

base query into a mutated query that creates identical LPGs with

the base query, i.e., satis�es the LPG-isomorphism relation, yet the

return di�erent results. For instance rule 20 in Table 2 adds distinct

restrictions on return results, which obtaining a mutated query

that does not change the graph, yet return less or equal number of

records than the base query.

For each seed query, we parse it to identify potential mutation

points and apply a mutation rule that �ts the point based on its

probability. If no rule is identi�ed, a random one is chosen. We

support multi-step-mutation when mutation rules are transitive,

meaning consecutive applications of two mutation rules that both

adhere to Labeled Property Graph Isomorphism will also comply.

4.3 Oracle

Since we focus on detecting bugs triggered by queries contain-

ing writing operations, which change the graph database status,

the oracle should precisely capture those changes. Moreover, the

queries may return records, which should also be correct according

to the query semantics. Therefore, our oracle contains two parts, i.e.,

checking the correctness of the graph database status and checking

the correctness of the query results.

Graph-state persistence. To check whether a query correctly

modi�es the graph database, we rely on the metamorphic rela-

tions, i.e., LPG-isomorphism and LPSG-isomorphism, proposed

Algorithm 1: Deciding Isomorphism Relations of two La-

beled Property Graphs (LPG)

Input : two LPGs�1,�2; an intermediate state B ; the initial state

B0 has" (B0) = ∅

Output : the mappings between the two graphs or mapping failed

1 Function F(B, =,<) :

2 if Nodes = and< have identical labels, properties, outgoing edges

and incoming edges then

3 return True

4 end

5 return False

6 Function ComputePairs(B,�1,�2 ) :

7 % (B )={}

8 Let)>DC

1 (B ) and)>DC

2 (B ) be the sets of nodes that are the

destination of edges starting from�1 (B ) and�2 (B )

9 Let) 8=

1 (B ) and)
8=

2 (B ) be the sets of nodes that are the origin

of edges ending in�1 (B ) and�2 (B )

10 foreach = in)>DC

1 (B ) ,< in)>DC

2 (B ) do

11 Add (=,<) to % (B )

12 end

13 foreach = in) 8=

1 (B ) ,< in) 8=

2 (B ) do

14 Add (=,<) to % (B )

15 end

16 return % (B )

17 Function MATCH(B ) :

18 if " (B ) covers all the nodes of�2 then

19 return" (B )

20 end

21 else

22 % (B )=ComputePairs(B,�1,�2 )

23 foreach (=,<) in % (B ) do

24 if F(B, =,<) then

25 Compute the state B′ obtained by adding (=,<) to

" (B )

26 CALL MATCH(B′ )

27 end

28 end

29 Restore data structures

30 end

in Section 3. In particular, we propose three classes of mutation

rules (in section 4.2) guided by the isomorphism relations and

then generate a pair of base query and mutated query, such that

the graph databases modi�ed by the pair of queries preserve the

corresponding isomorphism relation. Therefore, the problem of

checking whether a query correctly modi�es the graph database is

transformed into the problem of checking whether the two graph

databases (which are labeled property graphs) updated by the pair of

base and mutated queries preserve the LPG-isomorphism or LPSG-

isomorphism relations, we refer this checking as the graph-state

persistence checking.

Deciding whether two graphs are isomorphic is a known NP

problem in the graph theory and there are various algorithms [14,

37] trying to solve the problem, where VF2 is the most widely

adopted due to its stable performance on di�erent types of graphs
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- [16]. Therefore, we adopt VF2 and customize it according to our

speci�c application scenario.

Algorithm 1 shows our customized algorithm for deciding the

LPG-isomorphism of two labeled property graphs. The input con-

tains two LPGs�1,�2 to be checked, an intermediate state B which

is used to record the current mapping status, the initial state B0 such

that" (B0) is an empty set. Note that" (B) maintains all the node

pairs which have been mapped successfully under current state B .

The output of our algorithm is either the mapping result or map-

ping failed. MATCH(B) (lines 17-30) is the main logic of the VF2

algorithm, which returns the graph mappings if all nodes in both

graphs are successfully mapped (lines 18-20). Otherwise, it �rst

computes % (B) by invoking function ComputePairs (line 22), which

contains all node pair candidates to be added to the" (B). Then each

pair in % (B) is checked for feasibility of adding to " (B), which is

accomplished by function F(B, =,<) (line 24). Whenever a new pair

is added to" (B), a new status B′ is created, which callsMATCH(B′)

recursively for subsequent mappings (lines 24-27). Line 29 is the

backtracking process when no pairs in % (B) can be added to" (B).

Function ComputePairs (lines 6-16) basically add all node pairs that

are one-step reachable to nodes in successfully mapped pairs in

" (B) into % (B).

Our algorithm follows the main logic of VF2, with the following

customization, which simpli�es the complexity of applying the

algorithm in our scenario. In the original VF2 algorithm, which ap-

plies to general graph matching scenarios, the function that decides

whether the node pairs in % (B) can be added to " (B) by mainly

checking on the in-degree and the out-degree of the correspond-

ing nodes. In our scenario, we work with labeled property graphs,

where nodes and edges are associated with labels and properties,

which should be the same according to our de�nition on LPG-

isomorphism. Therefore, we add a semantic checking step to check

the labels and properties of the corresponding nodes of the pair.

Note that the original VF2 algorithm has a worst case complexity

of O(=!=) [14]. Our scenario is the simpli�ed scenario of the origi-

nal graph isomorphism checking problem, since the LPGs that we

need to check on are created incrementally by our queries, and thus

the status B in the algorithm can be associated with each generated

query. We implemented the above customized VF2 algorithm that

assigns a unique ID property to each node and edge, this approach

streamlines our search process by eliminating the need for back-

tracking unsuccessful mappings, reducing the complexity to O(=2),

which is the best case complexity of VF2 [14]. Our experiments in-

dicate that LPG comparison accounts for only 2.64% of GraspDB’s

total execution time.

For LPSG-Isomorphism checking, as we can obtain the nodes/edg

-es or properties being modi�ed on G’ by the mutated query, we

can easily create a sub-graph or super-graph �̄ base on G, which is

the LPG queried by the base query, by applying the modi�cations

to G. Then we invoke the LPG-Isomorphism checking algorithm

for the graph pair of (G’, �̄), which should be LPG-Isomorphic.

Query result correctness. Since the queries with writing clauses

may also have return results, we need also check the correctness

of the query results as part of our oracle to reduce potential false

negatives, i.e., the cases where graph-state is correctly preserved

yet the return results are incorrect. This step simply check whether

Table 3: Information on The Tested GDBMS.

GDBMS Rank Github Stars Init Release LoC

Neo4j 1 12.4k 2007 1,304K

RedisGraph - 2.0k 2018 1,298K

MemGraph 8 2.1k 2017 268K

AgensGraph 30 1.3k 2016 1,510K

the returned result sets satisfy the relations (=, ⊂, ⊃) introduced by

the corresponding mutation rule. Note that di�erent from existing

approaches on testing GDBMS [21, 25], where only identical result

sets are regarded as correct, our mutation rules may generate query

pairs which result in di�erent result sets (e.g., rules 18-20 in Table 2),

making our oracle able to detect bugs that are not detectable by

oracles of existing approaches.

5 Evaluations

We implement our prototypeGraspDBwith over 11K non-comment

lines of Java code. GraspDB uses Neo4j Java Driver 4.1.1 to con-

nect and interact with Neo4j and Memgraph, JRedisGraph 2.5.1 to

connect and interact with RedisGraph and AgensGraph Java Driver

1.4.2 to connect and interact with AgensGraph. All evaluations are

conducted on a computer with Intel i5-8400 CPU, 16 GB of memory

and Windows 11 OS. We aim to address the following research

questions in our evaluation.

• RQ1: Can GraspDB detect unknown real-world bugs?

• RQ2: How does each component contribute to the overall

e�ectiveness of GraspDB?

• RQ3: How does GraspDB perform in bug detection e�ec-

tiveness compared to baselines?

5.1 Evaluation Setup

Testing Subjects.We select four popular real-world graph database

engines that support Cypher as our testing subjects. Table 3 shows

the meta information of the tested graph databases. Neo4j [10]

is the most widely adopted graph data platform in the market

according to the DB-Engines Ranking [4]. RedisGraph [11] is a

high-performance graph database module that extends Redis. It

employs the property graph model and uses the Cypher query lan-

guage for data manipulation and retrieval. RedisGraph is known

for its high performance and real-time data processing capabili-

ties. Memgraph [8] is an in-memory graph database designed for

real-time data analytics. It supports openCypher and is compatible

with Neo4j. AgensGraph [2] is based on the powerful PostgreSQL

RDBMS, and is optimized for handling complex connected graph

data and provides plenty of powerful database features essential

to the enterprise database environment. We test the Neo4j Com-

munity Edition from v5.6.0 to v5.12.0, RedisGraph from v2.10.9 to

v2.12.10, MemGraph Community Edition from v2.7.0 to v2.11.0 and

AgensGraph Community Edition 2.13.1. All these versions are latest

during our testing period from 2023.4 to 2023.10.

Baselines. We compare GraspDB with GDSmith [20] and Graph-

Genie [21]. GDSmith is the latest di�erential testing approach on

graph databases that is capable of generating syntax and semantic

correct Cypher queries. GraphGenie is an metamorphic testing
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Table 4: Bugs Detected by GraspDB.

GDBMS Detected Con�rmed Fixed Duplicate Writing-related GSO-related

Neo4j 35 33 30 2 18 2

RedisGraph 15 12 6 1 6 4

MemGraph 17 13 7 0 7 4

AgensGraph 10 0 0 0 0 0

Total 77 58 43 3 31 10

Table 5: Types of The Con�rmed Bugs

GDBMS Logic Error Crash Inconsistency

Neo4j 2 29 0 2

RedisGraph 4 2 6 0

MemGraph 5 1 7 0

Total 11 32 13 2

Table 6: Distinct Bugs Detected by Variants of GraspDB

Method Neo4j RedisGraph MemGraph

GraspDB 8 7 10

GraspDB-GSO 7 6 7

GraspDB-AWC 7 6 9

GraspDB-MWC 6 4 6

GraspDB-MRC 6 5 8

approach, which conducts graph pattern transformations guided

by injective and surjective relations to generate comparable query

pairs. GraphGenie has shown state-of-the-art performance in de-

tecting bugs in GDBMS [21] and outperforms other metamorphic

testing approaches such as GDBMeter [22]. Therefore, we choose

GDSmith and GraphGenie as baselines for comparison.

5.2 RQ1: Ability on Detecting Unknown Bugs

Table 4 show the bugs that GraspDB detected on the four testing

subjects. GraspDB detected 77 bugs during the testing period of

around 6 months. Among those bugs, 58 are con�rmed and 43 have

been �xed. Among the con�rmed bugs, 31 is detected by writing

clauses in the generated queries, 10 are detected by our graph-state

persistent oracle and and 13 via our mutation rules.

Table 5 shows the types of the con�rmed bugs. We can observed

that the majority of bugs cause errors or system crashes, indicating

that the writing-related functionalities are under-tested, and that

those bugs may cause serious results, such as system crash. It is thus

critical to detect bugs in writing-related functionalities. There are 11

logical bugs, 10 of which are detected by the graph-state-persistent

oracle and the other one is detected by return results comparison.

There are 2 bugs in the inconsistency category, meaning that the

bugs are caused by GDBMS implementation being inconsistent

with Cypher document.

5.3 RQ2: Contribution of Di�erent Components

In order to validate the contribution of di�erent components of

GraspDB to bug detection, we remove each component of GraspDB,

i.e., the graph state oracle, the AWC mutation rules, the MWC

mutation rules and the MRC mutation rules, to obtain 4 variants

of GraspDB, which are noted GraspDB−�($ , GraspDB−�,� ,

GraspDB−",� , GraspDB−"'� , correspondingly. And we run

GraspDB and its variants on identical environments (Neo4j v5.8.0,

RedisGraph v2.12.10 andMemGraph v2.10.0) separately for 12 hours

each, more than 360 bug reports are produced for each variant. We

randomly selected 10% of the bug reports to analyze due to the

heavy manual e�orts required for the large amounts of bug reports.

Table 6 reports the experiment results of distinct bugs detected

by each variant. We can observe that GraspDB detects the most

number of distinct bugs during the experiment period. The vari-

ant of removing the graph-state oracle (GraspDB−�($ ), and vari-

ants of removing each class of mutation rules (GraspDB−�,� ,

GraspDB−",� , GraspDB−"'� ) all miss to detect some of the

bugs. For instance, GraspDB−�($ is not able to detect logic bugs

caused by writing operations. GraspDB−"'� cannot detect bugs

that causes return results to be di�erent. We can conclude from

the experiment results that all components of GraspDB contribute

individually to the e�ectiveness of detecting bugs and thus it is the

most e�ective to combine all of them for bug detection.

5.4 RQ3: Comparison with Baselines

Although it is di�cult to have a fair and direct comparison between

testing techniques, we conducted a best-e�ort empirical testing

comparison between GraspDB and baselines to illustrate their

di�erences. In particular, we run each compared tools in the same

environment for the same duration of time, and compare on the

distinct bugs detected as well as the false alarm rate. Following the

experiment settings of GDSmith [20], we ran GraspDB, GDSmith

and GraphGenie on the databases supported by them for 12 hours.

All databases were the newest version at the time of the experiment,

with Neo4j v5.12.0, RedisGraph v2.12.10, MemGraph v2.11.0 and

AgensGraph v2.13.1. GDSmith is capable of generating test cases

and graph databases. GraspDB improves GDSmith with writing-

related clauses and sub-clauses for test case and database generation.

GraphGenie does not support database generation, therefore, we

follow the setting of GraphGenie and uses the Movie Graph [26],

consisting 171 nodes and 253 relationships as the database for the

experiment of GraphGenie.

5.4.1 Detected Unique Bugs. Table 7 shows the comparison results

with baselines, where we report the total number of bug reports

analyzed, the number of unique bugs in those bug reports and

the number of false alarms. During the 12-hour testing, 13632,

3052, and 2502 bugs were reported by GDSmith, GraphGenie (auto-

deduplicated), and GraspDB, respectively. Due to the lack of reliable

bug deduplicators and the demand for identifying false alarms, we

made e�orts to manually examine the results of all methods in

our evaluation to increase the reliability of the �ndings. Note that

GraphGenie’s deduplicator works by recognizing bugs triggered

by queries mutated from the same base query and with identical

return result counts as duplicate, su�ering from false positive when

di�erent bugs lead to the same return result counts. The situation

becomes more problematic in our case as not all captured bugs have

return results. Given large number of reported bugs, it is infeasible
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Table 7: Results on Comparison with Baselines

Approach
Neo4j RedisGraph MemGraph AgensGraph

Total Unique False Alarm Total Unique False Alarm Total Unique False Alarm Total Unique False Alarm

GDsmith 250 0 250 250 2 87 250 0 250 - - -

GraphGenie 2 0 2 250 3 85 - - - 39 0 39

GraspDB 24 3 5 75 6 5 104 6 13 250 10 9

to manually analyze each report. Hence, we randomly sampled 250

reports from each target GDBMS for manual analysis.

Since GDSmith is a di�erential testing approach and it compares

the results of the three tested GDBMSs to report bugs, therefore,

the bugs reported in Neo4j, RedisGraph and MemGraph are the

same. The results show that there are 2 unique bugs detected from

those 250 bug reports. The two bugs are both in RedisGraph, which

does not follow the Cypher documentation in their implementation.

Those bugs are known limitations [7] and the developers won’t

�x them for a while for the sake of robustness. As GDSmith is a

di�erential testing approach, which report bugs by comparing all

the databases under test, therefore, the reported numbers of the

three supported databases (Neo4j, RedisGraph and MemGraph) are

the same. GDSmith does not support AgensGraph and thus we do

not report the results on it.

GraphGenie produces 2 and 39 bug reports on Neo4j and Agens-

Graph, respectively, and after our manual analysis, all of the re-

ported bugs on those two databases are false alarms. GraphGenie

produces 3052 bug reports on RedisGraph. We randomly sampled

250 bug reports for manual analysis and 3 unique bugs are identi-

�ed. GraphGenie does not support MemGraph and thus we do not

report the results on MemGraph.

GraspDB produced 24, 75 and 104 bug reports and 3, 6 and 6 are

distinct bugs on Neo4j, RedisGraph and MemGraph, respectively.

GraspDB produced 2502 bug reports on AgensGraph, we randomly

selected 250 for manual analysis and identi�ed 10 unique bugs.

To summarize, GraspDB found 15 unique bugs in 12 hours, 8

of which are related to writing operations, while GDSmith and

GraphGenie can only �nd 2 and 3 bugs, respectively, which are all

not writing operation-related bugs. On average, 18 bug report is

analysed to identify 1 unique bug detected by GraspDB, while this

number is 97 and 125 for GraphGenie and GDSmith, respectively.

GraspDB can detect bugs more accurately with low duplication

rate, and thus requires far less manual e�orts for bug report analysis.

Overall, GraspDB generates fewer bug reports. One reason is the

overhead incurred by the increasingly large graph and the large

number of time-consuming writing operations. Less test cases can

be examined during the same time periods, hence less bug reports.

However, changing graph sizes and writing operations are essential

for discovery of writing related bugs. Another reason is due to the

low duplicate bug report rate of GraspDB compared to baselines.

5.4.2 False Alarms. GDsmith is a di�erential testing approach for

Cypher-based GDBMSs and found 28 previously unknown bugs.

However, we �nd that it has a high false alarm rate during our pre-

liminary experiments on it. The reason is mainly due to the di�erent

implementation choices on the same Cypher feature by di�erent

1 WITH 1 AS a WHERE false WITH 1 AS n RETURN max(1),n;

2 −− R e s u l t on Neo4 j : empty

3 −− R e s u l t on MemGraph : nu l l , n u l l

(a) Example false alarm by GDSmith due to di�erent semantic

implementations on GDBMSs

1 OPTIONAL MATCH (c)-[:PP]-() WHERE false RETURN count(c)

2 −−Re tu rn R e s u l t : 0

3 OPTIONAL MATCH (c)-[:PP]-() WHERE false RETURN count (*)

4 −−Re tu rn R e s u l t : 1

(b) Example false alarm by GraphGenie due to nonequivalent

semantics of Count(c) and Count(*)

1 CREATE () ,();

2 MATCH () UNWIND [1,1] as a WITH DISTINCT * RETURN a;

3 −−Re tu rn R e s u l t : 1

4 CREATE () ,();

5 MATCH path =() UNWIND [1,1] as a WITH DISTINCT * RETURN a;

6 −−Re tu rn R e s u l t : 1 , 1

(c) False alarm of GraspDB due to adding a variable

Figure 5: False alarm examples

GDBMSs. This is a common limitation for di�erential testing ap-

proaches and similar �ndings is also reported by GraphGenie [21].

This limitation leads to heavy manual e�orts in analyzing the large

amount bug reports to rule out false positives. As shown in Table 7,

87 false alarms have been identi�ed from the 250 bug reports of

GDsmith, making more than 1/3 of the reported bugs false posi-

tives. All of the false alarms are caused by di�erent implementation

choices by di�erent GDBMSs, Among which 70 are due to unde-

�ned behavior in Cypher documentation, and 17 are due to di�erent

numerical representation formats. One such false alarm example

is shown in Figure 5(a), where Neo4j and MemGraph have di�er-

ent implementation choices for the return clause which returns

aggregate function as results.

GraphGenie is a metamorphic approach, which do not have

false alarms introduced by di�erent implementation choices. The

false alarms produced by GraphGenie is mainly due to inaccurate

transformation rules. Figure 5(c) shows a false alarm produced by

GraphGenie. The semantics of count(c) and count(*) are di�er-

ent, as null is not counted in the former case and is counted in

the latter case. GraphGenie used them for identical semantic trans-

formation, which caused this false alarm. We also identify another

similar incorrectly used clause pairs, i.e., OPTIONAL MATCH and

MATCH, by GraphGenie, which introduces false alarms. We’ve con-

tacted the authors of GraphGenie and received their con�rmation

on the reasons of the false alarms.

There are also some false alarms introduced in our approach,

with similar causes as GraphGenie. Figure 5(d) shows an example

false alarm GraspDB produced. In our mutation rule, a variable
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p is introduced with the purpose of perceiving the semantics of

the query. However, in this case, the semantics of the query is

changed. The root cause is that the new variable p is introduced

before WITH clause, causing more records to be passed backwards

when �ltering out the same records by clause WITH DISTINCT *,

leading to wrong return results. This type of false alarms is similar

with that of GraphGenie and can be avoided by carefully implement

the mutaiton rules to �lter out those cases. GraspDB has a far lower

false alarm rate compared with GDSmith and GraphGenie, saving

plenty of time in manual checking the bug reports.

5.5 Threats to Validity

Threats to internal validity mainly lie in the implementation

of GraspDB. The random query generation of GraspDB produces

syntactically valid statements, which, however, can result in se-

mantic errors when being executed. For instance, integer adding

can result in integer out of bounds. We automatically �ltered those

semantic errors based on error messages, which may potentially

�lter bugs in GDBMSs which are not due to semantic errors. And

due to the large number of report generated, we have to sample to

analyze and identify the bugs, which may miss bugs. Another threat

lies in the manual validation process of logic bugs found in GDBMs.

Due to the large number of report generated, we have to sample to

manually deduplicate and identify the bugs, which may miss bugs.

The manual analysis process may also introduce errors. To make

the validation as accurate as possible, three authors analyze all

reported discrepancies, and reach consensus for all discrepancies.

The large number of duplicated bugs poses a signi�cant challenge

for manual analysis. Bug automatic deduplication is an important

and challenging research topic with many ongoing studies [39].

GraphGenie’s deduplicator works by recognizing bugs triggered

by queries mutated from the same base query and with identical

return result counts as duplicate, su�ering from false positive when

di�erent bugs lead to the same return result counts. The situation

becomes more problematic in our case as not all captured bugs

have return results. As a compromisation, we manually deduplicate

the bugs by analyzing both the bug symptoms and root causes. We

leave automated bug deduplication as a future work.

Threats to external validity mainly lie in the subjects chosen

in our evaluations, which do not cover all graph databases sup-

porting Cypher. To mitigate the threat, we pick four well-known,

open-source graph database engines with active development com-

munity for fast feedback. The selected GDBMSs are among the

most popular graph databases and have di�erent designs on system

architecture or data storage, making them representative. GraspDB

is applicable to test any graph databases supporting the Cypher

language. Actually, GraspDB can also be applied to graph database

engines supporting other languages such as Gremlin, with the assis-

tant of query translation plugins such as Cypher for Gremlin [3].

6 Selected Bugs

Since the purpose of our approach is primarily to test the writing-

related functionalities of graph databases, we analyze the bugs

related to writing clauses. For the clarity and simplicity of illustra-

tion, we show the minimized test cases as well as minimized graph

data necessary to demonstrate the underlying core problem.

1 Create p=()<-[r:T]-() Create ({k:COUNT{RETURN [r]}});

2 −− Exp e c t e d b e h a v i o r : 1 pa th and 1 node c r e a t e d

3 −−Ac tua l b e h a v i o r : E x e c u t i o n F a i l e d E r r o r

(a) Consecutive node creation with dependencies failed in Neo4j

1 CREATE () ,();

2 MERGE (n0) MERGE (n1) CREATE (c0);

3 −− Exp e c t e d b e h a v i o r : 4 nod e s c r e a t e d

4 −−Ac tua l b e h a v i o r : Memory l i m i t e x c e e d e d and Conn e c t i o n c l o s e d

(b) Nodes are created endlessly in MemGraph

1 CREATE (n0)<-[r0:T]-() DETACH DELETE n0 DETACH DELETE r0;

2 −− Exp e c t e d b e h a v i o r : n0 and r 0 a r e d e l e t e d

3 −−Ac tua l b e h a v i o r : C onn e c t i o n c l o s e d

(c) Crash caused by repeated deleting a relationship in Mem-

Graph

Figure 6: Case study of bugs detected by GraspDB

Consecutive node creation with dependencies failed in Neo4j.

Figure 6(a) shows that an error occurs in a query which creates

nodes that have dependencies2. The root cause is due to an optimiza-

tion in Neo4j, which merges two consecutive CREATE clauses to be

able to create them together. However, this optimization shouldn’t

apply in the case that the two create clauses have dependencies.

Otherwise, an error is triggered due to referencing a variable that

hasn’t been created yet. We have reported the bug to Neo4j devel-

opers and it has been �xed.

Crash caused by creating nodes endlessly in MemGraph. Fig-

ure 6(b) shows a query that creates nodes endlessly and eventually

leads to a crash and the database connection close3. The �rst line

creates 2 nodes in the graph. Then the statements MERGE (n0) and

MERGE (n1) each matches the two nodes created before them, pro-

ducing 4 rows of records, which are passed to the last create clause,

creating 1 node for each matched record and �nally result in 4 cre-

ated nodes. However, due to incorrect semantic implementations

by MemGraph, the node creating will not end until exceeding mem-

ory limits, and cause connection being closed. This bug seriously

a�ects the usability, and potentially security aspects of the graph

database. The developers have con�rmed this bug and �xed it for

this scenario. They respond that this issue is still open for other

scenarios, which they are not able to �x for compatability concerns.

Crash caused by repeated deleting a relationship in Mem-

Graph. Figure 6(c) shows a query that leads to a crash due to

deleting a relationship which has been deleted before4. According

to the OpenCypher9 documentation, DETACH DELETE is used to

delete nodes (including relationships connected to it) or relation-

ships. Therefore, both n0 and r0 are deleted in the �rst DETACH

DELETE clause. When the second DETACH DELETE clause ex-

ecutes, MemGraph tries to detach relationship r0 from its nodes.

Since node n0 is deleted by the previous DETACH DELETE clause,

the second delete will crash the database. This bug has already been

con�rmed and �xed.

2https://github.com/memgraph/memgraph/issues/1333
3https://github.com/neo4j/neo4j/issues/13305
4https://github.com/memgraph/memgraph/issues/1329
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7 Related Work

Testing of GDBMS. GDBMSs have gained extensive adoption,

leading to a growing focus on their quality and correctness. Two

types of approaches have been proposed for testing GDBMS, i.e., dif-

ferential testing approaches and metamorphic testing approaches.

Grand [41] realized di�erential testing for GDBMSs that support

the Gremlin language. For test case generation, Grand uses a model-

based approach to generate valid Gremlin queries. GDsmith [20] is

another di�erential testing approach to test GDBMSs which sup-

port the Cypher query language, another popular query language

for GDBMS. For test case generation, GDsmith uses skeleton gener-

ation and completion to generate semantically valid Cypher queries.

The major drawback of di�erential testing is that bugs can not be

detected when di�erent DBMSs su�er from the same ones. Further-

more, di�erential testing approaches su�er from high false alarm

rates due to di�erent implementation choices of GDBMSs, as has

been discussed in shown in Section 5.4.

GDBMeter [22] is the �rst metamorphic testing approach which

applied the TLP [30] from relational DBMS to graph DBMS and

found 40 unique, previously unknown bugs. GraphGenie [21] pro-

poses injective and surjective Graph Query Transformation (GQT)

to detect logic bugs. It leverages graph properties to generate

follow-up queries by mutating graph query patterns and detected

25 unknown bugs. GRev [25] adapts Equivalent Query Rewriting

(EQR) to GDBMS queries by Random Walking on Abstract Syn-

tax Graph (ASG), an abstraction they proposed to represent query

paths. Gamera [42] develops three classes of graph-aware metamor-

phic relations, i.e., elementary MRs, compound MRs and dynamic

MRs, which directly applies to labeled property graphs, for testing

GDBMS. Di�erent from GraspDB, non of existing metamorphic

testing approaches focus on detecting bugs caused by writing op-

erations, and the oracles in their approach are not able to detect

labeled property graph changes, thus unable to capture those bugs.

Metamorphic Testing of RDBMS. Ternary Logic Partitioning

(TLP) [30], a metamorphic testing approach �rst proposed for test-

ing RDBMSs, has also been applied to test GDBMS [22]. This tool

has been used to �nd 175 bugs in widely deployed RDBMSs. (PQS)

is a general and highly-e�ective approach to �nding bugs in DBMS.

The core idea of PQS [31] is to automatically synthesize queries

which guarantees to fetch a speci�c, randomly selected row, called

the pivot row. If the DBMS fails to fetch the pivot row, it likely

causes a bug in the RDBMS. Non-optimizing Reference Engine

Construction (NoREC) [29] is another widely-known metamorphic

testing approach to test RDBMS. It compares the execution results

of a given optimized querywith the non-optimized version that they

rewritten based on the original query, to detect optimization bugs

in DBMS. The metamorphic testing approaches on RDBMSs share

similar purposes and scenarios as GDBMSs, and can potentially be

applicable to GDBMSs.

8 Conclusion

In this paper, we present GraspDB, the �rst metamorphic testing

approach speci�cally designed to identify bugs related to writing op-

erations in graph database systems. In particular, we de�ne the con-

cepts of Labeled Property Graph Isomorphism (LPG-Isomorphism)

and Labeled Property Subgraph Isomorphism (LPSG-Isomorphism)

relations, serving as the basis of our Graph State-Persistence ora-

cle. To engage more code logic on writing operations, we propose

three classes of mutation rules, i.e., add writing clauses, modify

writing clauses and modify return clauses, which are guided by the

LPG-Isomorphism and LPSG-Isomorphism metamorphic relations.

We apply the mutation rules on base queries to obtain base query,

mutated query pairs, the execution correctness of which can be

veri�ed with the metamorphic relations. We conduct experiments

on four commercial GDBMSs. Our approach detected 77 previous

unknown bugs. 58 of them have been con�rmed by the developers,

and 43 have been �xed. Among them, there are 11 logic bugs, 32 er-

rors, 13 crashes and 2 inconsistencies with Cypher documentation.

Additionally, 31 bugs cannot be triggered without database writ-

ing operations. We have implemented our method as a tool called

GraspDB and made it public available to inspire future research.

9 Data Availability Statement

We have released the source code and data of our work [24] to

inspire future research.
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