
T-SQL: A Lightweight Implementation to
Enable Built-in Temporal Support in

MVCC-Based RDBMSs
Zhanhao Zhao , Wei Lu , Hongyao Zhao, Zongyan He, Haixiang Li, Anqun Pan, and Xiaoyong Du

Abstract—The adoption of temporal expressions into SQL:2011 has continuously driven the extensions of temporal support in

relational database systems (a.b.a. RDBMSs). In this paper, we present T-SQL, a lightweight yet efficient built-in temporal

implementation in RDBMSs. T-SQL entirely relies on multi-version concurrency control (MVCC), widely adopted in RDMBSs, to

manage temporal data. For temporal data, current records are maintained in legacy databases, and historical records, i.e., previous

versions of current records (if any), which used to be periodically reclaimed are separately maintained in KV stores. To enable temporal

query processing under SQL:2011, we extend the query engine in legacy RDBMSs to support query processing over either current

records or historical records or both. Further, regarding temporal data are ever-increasing, we propose various optimizations to reduce

the storage overhead of KV stores while keeping efficient query performance. We elaborate a publicly available implementation on how

to integrate T-SQL into both centralized and distributed RDBMSs. We conduct extensive experiments on both YCSB and TPC-series

benchmarks by comparing T-SQLwith other temporal database systems. The results show that T-SQL is both lightweight and efficient.

Index Terms—RDBMS, temporal database, MVCC, SQL:2011, KV store
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1 INTRODUCTION

IT is of great importance to maintain not only currently valid
data, but also the history of all data changes. Typical exam-

ples include forensic analysis and legal requirements to store
data for a certain number of years, retrospective and trend
data analysis to offer the asset use details as of two years ago,
and logical corruption recovery to rewind tuples/relations/
databases as of a particular point in time [32].

The study on temporal datamanagement has been going on
for decades, but only recently has some progress been made.
Temporal data management by applications brings prohibi-
tively expensive development and maintenance overhead.
Instead, extensions to support temporal data management in
conventional RDBMSs have been extensively explored.Never-
theless, the temporal support offered by commercially avail-
able software tools and systems is still quite limited. Until
recently, the adoption of temporal expressions into SQL:2011
makes themajorDBMSs start to provide built-in temporal sup-
port. The temporal extensions typically include: (1) extension
of non-temporal relations to temporal relations, (2) unified
management of both current data and historical data in a

single database, (3) query rewrite functionality by expressing
the semantics of temporal queries in equivalent conventional
(non-temporal) SQL statements.

In SQL:2011, the temporal features mainly include tem-
poral relation definitions, temporal queries, and others (e.g.,
temporal constraints). As compared to the non-temporal
counterpart, a temporal relation associates either valid time,
or transaction time, or both. Either valid time or transaction
time is a closed-open period (i.e., time interval) ½s; tÞ, with s
as start time and t as end time. Valid time is a time period
during which a fact was/is/will be true in reality, and
transaction time is a time period during which a fact is/was
recorded (i.e., current/historical) in the database.

Example 1. Table 1 shows an example of the account balance
for gaming players. Each player has one current record and
perhaps one or several historical records. For example,
r1:4; r2:2; r3:1 are current records of players James, David,
and Jack, respectively, while the remaining are the histori-
cal records of either James or David. Assume each recharge
increases the validity of account balance by 6 months, e.g.,
the valid time of current record r1:4 is [2018-11-12,2019-05-
11). Besides, the transaction time of each record r indicates
the timestamps on which r is created and deleted/updated
if any (otherwise the timestamp is set to1). For instance, it
can be observed that r1:4 is created on ‘2018-11-12’ and has
not yet been deleted/updated.

Thus far, we have witnessed a big burst of temporal sup-
port in legacy database systems, including Oracle [4], Tera-
data [8], MariaDB [3], SQL Server [6]. However, they suffer
from either limited expressiveness or poor performance, or
both. First, the temporal data model is inadequate. It is often
reported that DBAs are fired or forced to run away due to

� Zhanhao Zhao, Wei Lu, Hongyao Zhao, Zongyan He, and Xiaoyong Du
are with the Key Laboratory of Data Engineering and Knowledge Engineer-
ing, Ministry of Education, School of Information, Renmin University of
China, Beijing 100872, China. E-mail: {zhanhaozhao, lu-wei, hongyaozhao,
zongyanhe, duyong}@ruc.edu.cn.

� Haixiang Li and Anqun Pan are with the Tencent Inc., Shenzhen 518054,
China. E-mail: {blueseali, aaronpan}@tencent.com.

Manuscript received 10 January 2021; revised 13 April 2021; accepted 10 May
2021. Date of publication 19 May 2021; date of current version 7 December 2022.
(Corresponding authors: Wei Lu and Xiaoyong Du.)
Recommended for acceptance by G. Chen.
Digital Object Identifier no. 10.1109/TKDE.2021.3081717

1028 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 1, JANUARY 2023

1041-4347 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on September 12,2024 at 02:10:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4044-7742
https://orcid.org/0000-0002-4044-7742
https://orcid.org/0000-0002-4044-7742
https://orcid.org/0000-0002-4044-7742
https://orcid.org/0000-0002-4044-7742
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0001-6769-2695
mailto:zhanhaozhao@ruc.edu.cn
mailto:lu-wei@ruc.edu.cn
mailto:hongyaozhao@ruc.edu.cn
mailto:zongyanhe@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:blueseali@tencent.com
mailto:aaronpan@tencent.com


an accidental deletion of valuable business data. This kind
of unexpectedly committed transactions, namely logical
data corruption, is difficult to avoid in real applications.
Yet, the temporal data model defined in SQL:2011 does not
explicitly support logical data corruption recovery. Techni-
cally, to address this issue, it is necessary to extend the tem-
poral data model, based on which we first figure out the
erroneous transaction, and then apply a sequence of reverse
operations over the records involved in the erroneous trans-
action. Second, the performance of legacy databases suffers from
the synchronization overhead by introducing the built-in temporal
support. Existing temporal implementations store history
and current records separately so as to skip over historical
records for current data query processing, which is deemed
to the dominant temporal queries. However, this separation
degrades the throughput of conventional transactional
workloads because any update/delete of a record r will
cause a synchronization that transfers r from the current
relation to the historical relation. In this way, any update/
delete of a record in the current relation will require exclu-
sive access to the historical relation, leading to a significant
drop in the whole system’s throughput. Third, temporal data
are maintained in an append-only mode, causing an ever-increas-
ing size. The overhead of maintaining a large volume of tem-
poral data degrades the query performance, and hence it is
of great necessity to develop a scalable storage engine to
enable efficient query processing.

To address the above issues, in this paper, we propose T-
SQL, a lightweight yet efficient built-in temporal implemen-
tation. We make the following contributions.

� We present a new temporal data model. As com-
pared to the non-temporal counterpart, besides the
valid/transaction time period defined in SQL:2011, a
temporal relation under the new model has two
transaction IDs. One ID corresponds to the transac-
tion that creates the record, and the other ID corre-
sponds to the transaction that deletes/updates the
record. By introducing the transaction IDs, it is able
to identify all records that are created/updated/
deleted in the same transaction, thus achieving the
recovery of logical data corruption. More impor-
tantly, temporal join queries taking the transaction
time as the join key can be enhanced by taking the
transaction ID as the join key instead.

� We propose a built-in temporal implementation
with various optimizations, and encapsulate it into

PostgreSQL [5] and Greenplum [2]. We have released
our implementation publicly available.

First, our implementation completely relies on the MVCC
mechanism and is lightweight. Like other temporal imple-
mentations in legacy RDBMSs, wemanage current and histor-
ical records separately as well. In legacy RDBMSs, any
update/delete of a current record results in synchronous
migration of newly generated historical records to the histori-
cal relation. Instead,we propose an asynchronous datamigra-
tion strategy, i.e., any update/delete of a current record does
not cause an immediate data migration. In our design, all
newly generated historical records are migrated to the histori-
cal relation only when the database system starts to reclaim
the storage occupied by records that are deleted or obsoleted,
which is also known as VACUUM in PostgreSQL and PURGE
inMySQL. This late datamigration transfers historical data in
batch and is almost non-invasive to the originally legacy
RDBMSs. Further, we utilize the KV store with various opti-
mizations to organize historical relations, in which only data
changes of historical records of the same entity are main-
tained, thus reducing the size of storage space.

Second, in response to the challenge that the transaction
time of each record is expensive to set in legacy RDBMSs, we
build an efficient transaction status manager. It maintains the
status of each transaction, including the transaction commit
time, in a transaction log. A special design of the manager
makes the retrieval of the commit time of a given transaction
ID atmost one I/O cost. During the datamigration,we update
their transaction time for each newly generated historical
record based on its transaction ID. For the current and histori-
cal records that have not yet been transferred to the historical
relation, we are still able to obtain the transaction time based
on their transaction IDs via themanager.

Third, to support temporal query processing, we extend
the parser, query executor, and storage engine of legacy
RDBMSs. Our temporal implementation supports all tempo-
ral features defined in SQL:2011. For valid-time qualifiers in
the temporal query, we transform the temporal operations
into equivalent non-temporal operations; while for transac-
tion-time qualifiers, we provide a native operator to retrieve
current and historical datawith various optimizations.

� We conduct extensive experiments on both real and
synthetic benchmarks by comparing T-SQL with Ora-
cle, SQL Server, and MariaDB. The results show that
T-SQL almost has minimal performance loss (only 7
percent on average) by introducing the temporal

TABLE 1
Gaming Player Account Balance

ID Player Bal Valid Time Transaction Time

r1:1 James 0 [2018-05-20,2018-10-21) [2018-05-20,2018-10-21)

r1:2 James 50 [2018-10-21,2018-11-01) [2018-10-21,2018-11-01)

r1:3 James 1000 [2018-11-01,2018-11-12) [2018-11-01,2018-11-12)

r1:4 James 2000 [2018-11-12,2019-05-11) [2018-11-12,1)

r2:1 David 150 [2018-10-20,2018-10-20) [2018-10-20,2018-10-20)

r2:2 David 200 [2018-10-20,2019-04-19) [2018-10-20,1)

r3:1 Jack 200 [2018-11-08,2019-05-07) [2018-11-08,1)
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features, and performs the best for most of the tempo-
ral queries.

The rest of the paper is organized below. Section 2 dis-
cusses related work. Section 3 formalizes our new temporal
data model. Section 4 outlines the system architecture. Sec-
tion 5 elaborates temporal query processing and storage
management. Section 6 presents the implementation. Sec-
tion 7 reports the experimental results, and Section 8 con-
cludes the paper.

2 RELATED WORK

The study on temporal data management has been going on
for decades, mainly in the fields of data model develop-
ment, query processing, and implementations.

Early work until 1990s mainly focused on the consensus
glossary of concepts for data modeling [16], [17], [18], [19],
[20]. At this stage, the contributions mainly include tempo-
ral relation definitions, temporal constraints, and temporal
queries. As compared to the non-temporal counterpart, a
temporal relation associates time, which is multi-dimen-
sional, and can be either valid time or transaction time, or
other types of time. The semantics of integrity constraints in
the temporal data model is also enriched [12], [39]. Entity
integrity does not enforce the uniqueness of the primary
key. Instead, it requires that no intersection exists between
valid times of any two records with the same primary key;
while for reference integrity, there must exist one matching
record in the parent relation whose valid time contains the
valid time of the child record. As compared to the regular
query syntax, temporal queries are formulated by express-
ing filtering conditions as period predicates [10], [25].

After attempts with many years to build the implementa-
tion on top of legacy RDBMSs, such as Oracle [4], DB2 [1],
and Ingres [40], it is well recognized that the cost, brought
by the development and maintenance of application pro-
grams, is prohibitively expensive. For this reason, since the
late 1990s, extensions to support temporal data manage-
ment using SQL have been extensively explored [11], [21],
[31], [44]. Although a set of temporal extensions, like TSQL2
[13], were submitted for standardization, these attempts are
not successful until the adoption of SQL:2011 [25]. In
response to SQL:2011, the mainstream of both commercial
and open-source database management systems, including
Oracle [4], IBM DB2 [1], Teradata [8], PostgreSQL [5], have
been dedicated to offer SQL extensions for managing tem-
poral data based on the newly standardized temporal fea-
tures. Oracle introduces the Automatic Undo Management
(AUM) system to manage historical data and answers tem-
poral queries through views executing on both historical
and current data. SQL Server, DB2, and Teradata utilize cur-
rent and historical relations to store current and historical
data separately. ImmortalDB [28] extends SQL Server to
support transaction-time queries. However, to the best of
our knowledge, existing temporal RDBMSs maintain histor-
ical records associated with each attribute value, while T-
SQL typically maintains the data changes of each historical
record compared with its previous version. Thus, T-SQL is
capable of reducing the storage overhead significantly.

Extensive efforts have been devoted to boosting the tem-
poral query processing by proposing various data access

methods. For these methods, the majority of them [22], [23],
[26], [29], [30], [41], [42] are either B+-trees or R-trees based,
which are particularly applicable for heap-based storage;
some of them [7], [15], [36] are designed and applicable for
KV stores, with the main purpose on a proper trade off
among read performance, write performance, and space
overhead to optimize the LSM-tree [33] or its variance.
Orthogonal to the existing work, our proposed access
method is still based on LSM-tree, and boosts the temporal
query processing by re-organizing the key/value pairs of
the historical data to skip the irrelevant key/value pairs as
many as possible.

This paper is an extension of the work originally pre-
sented in [32]. Compared with [32], we optimize the storage
engine by re-designing the historical data storage and refine
the query processing strategy. Besides, we present the
implementation of T-SQL in both centralized and decentral-
ized RDBMSs, and release it publicly available.

3 TEMPORAL FEATURES OF T-SQL

In this section, we describe the temporal features of our sys-
tem in terms of data models, temporal queries, and data
constraints.

3.1 Temporal Data Model

We support either of the following data models.

� Valid-time data model. As compared to the non-tem-
poral counterpart, a relation R under this model
associates valid time. Let fU; VTg be the attributes of
R, where U is the attribute set of the non-temporal
counterpart, and VT is the valid-time period.

� Transaction-time data model. As compared to the non-
temporal counterpart, a relation R under this model
associates transaction time and transaction IDs. We
denote fU; TT;CID;UIDg as the attributes of R,
where U is the attribute set of the non-temporal
counterpart, TT is the transaction-time period, CID
is the transaction ID that creates a record, and UID is
the transaction ID that updates/deletes a record.

� Bi-temporal data model. A relation R associates both
valid-time, transaction-time and transaction IDs, i.e.,
R has attributes fU; VT; TT; CID;UIDg.

We refer to a relation as a valid-time relation if itmerely has
valid time, and we make similar definitions for transaction-
time relation and bi-temporal relation. We denote VT as a
closed-open period ½VT:st; VT:edÞ, and TT as ½TT:st; TT:edÞ.
VT:st; VT:ed; TT:st; TT:ed are four time instants. For valid-time,
a record is either currently valid if VT:st � current time <
VT:ed, or historical valid if VT:ed � current time, or future valid
if VT:st > current time. For transaction time, a record is said
to be a current record ifTT:st � current time < TT:ed, and a his-
torical record if TT:ed � current time.

3.2 Temporal Syntax

We introduce the temporal syntax of T-SQL below.

3.2.1 Creating Temporal Relations

As compared to the non-temporal counterpart, a valid-time
relation is defined using the following SQL statement:
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CREATE TABLE R (ID INTEGER, Period VT)

A transaction-time relation is created by adding a schema-
level qualifier ‘WITH SYSTEMVERSIONING’:

CREATE TABLE R (
ID INTEGER

)WITH SYSTEM VERSIONING

The syntax of creating a bi-temporal relation is the com-
bination of the above.

3.2.2 Valid-Time Queries

Valid-time queries are defined as queries on valid-time rela-
tions. As compared to the regular SQL syntax, a valid-time
query can add valid-time predicates, like OVERLAPS and
CONTAINS, as the period predicates, which work together
with other regular predicates in the WHERE conditions.

3.2.3 Transaction-Time Queries

Transaction-time queries are defined as queries over transac-
tion relations. As compared to the regular SQL syntax, it is syn-
tactically extended in terms of the transaction time: (1) FOR TT
AS OF t, restricts records that are readable at t, (2) FOR TT
FROM t1 TO t2, restricts records that are readable from t1 to
(but not include) t2, (3) FOR TT BETWEEN t1 AND t2, restricts
records that are readable from t1 to (and include) t2.

3.2.4 Transaction ID Queries

New temporal queries are enriched by introducing transac-
tion IDs. On one hand, the join operation is extended based
on the transaction IDs, e.g., reconciliation requires a join
operation on the account balance relation (R) and the
expense statement relation (W ), shown below:

SELECT * FROM (
R FOR TT FROM ts1 TO ts2 as A
FULL OUTER JOIN
R FOR TT FROM ts1 TO ts2 as B
ON A.UID = B.CID

)
FULL OUTER JOIN
W FOR TT FROM ts1 TO ts2 as C
ON B.CID = C.UID

On the other hand, logical data corruption recovery (a.b.
a. LDCR) is fully supported. A basic LDCR is to rewind the
state of relation R to a given time t below:

REPLACE INTO R
(SELECT * FROM R FOR TT AS OF t)

By introducing transaction IDs, LDCR is extended to
support transaction-level recovery via the following syntax:

REWIND_TRANSACTION(TID)

This statement will invoke a sequence of reverse opera-
tions to recover the state of records that were inserted/
updated/deleted by transaction ID equal to TID. Note that

the recovery fails if the other transactions’ reads or writes
depend on the writes of the transaction whose ID is TID. To
make the system more user friendly, we report the transac-
tions that directly depend on the transaction whose ID is
TID when the recovery fails.

Example 2. Re-consider Table 1. Suppose transaction Ti dele-
tes Jack’s account, which updates current record r3:1 by set-
ting TT:ed to the current timestamp, and commits. Now we
find Ti is an erroneous transaction, and thus rewind Ti’s
operations using the statement ‘REWIND_TRANSACTION
(Ti)’. By doing this, we recoverTT:ed of r3:1 to1.

3.3 Temporal Constraints

For valid-time data model: (1) The entity integrity is relaxed to
the case that no intersection exists between the valid time of
any two records with the same primary key, e.g.,

PRIMARY KEY (ID, VT WITHOUT OVERLAPS)

(2) For reference integrity, there must exist one matching
record in the parent relation whose valid time contains the
valid time of the child record. For transaction-time data model:
(1) constraints can only be added to the current records and
follow the same logic in the conventional DBMSs. (2) users
are not allowed to assign/change the value of transaction
time and IDs, which can only be assigned/updated by the
database system. (3) users are not allowed to change the his-
torical records. For bi-temporal data model, the constraints are
the combination of the valid-time data model and the trans-
action-time data model.

4 SYSTEM OVERVIEW

In this section, we outline the overall system architecture of
T-SQL. T-SQL supports temporal features mainly based on
the extensions of three components shown in Fig. 1, (1)
parser, (2) query executor, and (3) storage engine. Since the
query executor relies on the storage engine, we introduce
the extensions in the order of (1)(3)(2).
� Parser. We extend the parser to support the syntax of

temporal queries, translate temporal queries into simpler
hybrid non-temporal and temporal queries, and output the
translated syntax tree to the query optimizer. It has two
main tasks. One task is to perform the lexical and syntax
analysis of input temporal queries, which follow the SQL
standard defined in SQL:2011. The other task is to translate
temporal qualifiers, perform semantic checks, and output a
syntax tree. In particular, valid-time involved operations
are translated into equivalent non-temporal operations, as
described in Section 3.2, while transaction-time involved
operations remain unchanged in the syntax tree. Note trans-
action-time involved operations are implemented as native
support in T-SQL which will be discussed later. For illustra-
tion purposes, we give an example to show the translation
of a given temporal query below.

Example 3. Suppose R is an account balance relation. Con-
sider the following temporal SQL statement that retrieves
the account balance of player James on 2018-10-30, recorded
inDBMS at 2018-10-11 00:00:00.
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SELECT ID, Player, Bal FROM R
WHERE Player = ‘James’
AND VT CONTAINS DATE ‘2018-10-30’
FOR TT AS OF TIMESTAMP ‘2018-10-11 00:00:00’

The parser translates the valid-time involved opera-
tions, which is underlined in the above statement, into
equivalent non-temporal operations which is underlined
in the following statement:

SELECT ID, Player, Bal FROM R
WHERE Player = ‘James’
AND VT.st � DATE ‘2018-10-30’
AND VT.ed > DATE ‘2018-10-30’
FOR TT AS OF TIMESTAMP ‘2018-10-11 00:00:00’

For illustration purposes, we demonstrate the syntax
tree and its intermediate form in Fig. 1.

� Storage engine. Like other temporal implementations, T-
SQL also stores historical and current data separately, in
which we implicitly build historical data storage to store the
historical data. Nevertheless, it adopts a completely differ-
ent way to maintain temporal data in terms of two key
mechanisms, i.e., (1) when to transfer data from current
data storage to historical data storage, and (2) how to orga-
nize the historical data considering that the historical data is
ever-growing. We remain the latter to be explained in the
next section.

Existing temporal implementations process transactional
tasks on historical and current data in synchronous mode.
Any update/delete of a current record produces one ormulti-
ple historical records which are then transferred from the cur-
rent relation to the historical relation simultaneously. To do
this, existing temporal implementations require to insert the
new current record into the current relation, and migrate the
newly generated historical records from the current relation
to the historical relation in the same transaction.

While T-SQL processes transactional tasks on historical
and current data in an asynchronous mode, we propose a
hybrid data storage system encapsulated with a novel late

data migration strategy, i.e., upon any update/delete of a cur-
rent record does not cause an immediate datamigration of the
newly generated historical records. Instead, all newly gener-
ated historical records are migrated to the historical data stor-
age when the database system starts to reclaim the storage
occupied by records that are deleted or obsoleted. In T-SQL,
storage reclamation is periodically invoked by the system in
order to improve the efficiency of storage space and query
performance. Similar operations can be found in other
DBMSs, like PURGE in MySQL and VACUUM in Post-
greSQL. Our late data migration strategy does not cause any
omissions of historical records based on the facts that (1) an
update/delete of a record in the conventional DBMSs does
not physically remove it from its relation, and (2) these deleted
or obsoleted records still remain in the data pages (according
to the MVCC mechanism) of the system. During the vacuum
stage, we first collect all newly generated historical records
from the data pages and then migrate them to the historical
data storage in batch. As compared to the existing work, this
late data migration brings two advantages. (1) Datamigration
in batch eliminates the access to historical data storage during
the update/delete of current records, and hence reducing the
transaction latency; (2) conflicts in concurrent data access to
historical data storage are completely avoided and hence
result in a significant improvement of the transaction through-
put for thewhole system.
� Query optimizer and executor. The query optimizer takes

a translated syntax tree as the input and generates the query
execution plan for the executor. Except for the transaction-
time qualifiers, the translated syntax tree is optimized just
like its non-temporal counterpart by the optimizer. We pro-
vide native support for the execution of temporal queries
with transaction-time qualifiers. Executor recognizes trans-
action-time qualifiers in the query execution plan and
invokes a native function call, including the tasks: (1)
retrieving current and historical data of interest, and (2)
integrating and returning the query results.

It is worth mentioning that many legacy RDBMSs, e.g.,
PostgreSQL, do not explicitly maintain the transaction com-
mit timestamps associated with records. However, according

Fig. 1. System overview.
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to our new temporal model, each record r needs to explicitly
maintain the commit time of the transaction that creates/dele-
tes r. To address this issue, we build an efficient transaction
status manager. The manager maintains the status for the
transactions, including commit time, in a transaction log. It
helps efficiently retrieve the commit time for a given transac-
tion ID.Our special design of themanagermakes this retrieval
at most one I/O cost. During the data migration, we set/
update its transaction commit time for each of the newly gen-
erated historical records by searching it from the transaction
status manager. For the current records and historical records
that have not yet been transferred to the historical data stor-
age, we are still able to obtain the transaction commit time
using the sameway.

Because we use current/historical data storage to store
current/historical records, respectively, the executor pro-
cesses the query plan over the current data storage and his-
torical data storage separately. To fetch the current records
of interest, we simply execute the query plan over the cur-
rent data storage. However, it is not trivial to retrieve histor-
ical records of interest. Remind in our temporal data storage
system, due to the late data migration, historical records
maintained in the historical data storage are incomplete,
and only querying the historical data storage could return
an incomplete result. Consider that the remaining historical
records are still in the current data storage, but are not visi-
ble to users. We propose an MVCC-based visibility check
approach to retrieving historical records of interest from the
current data storage. Details of the approach are elaborated
in Section 5.3.

5 STORAGE AND QUERY PROCESSING

In this section, we elaborate on two core techniques, tempo-
ral data storage, and temporal query processing.

5.1 Temporal Data Storage

As discussed in the previous section, we store current data
and historical data separately, and propose a late data
migration strategy to transfer newly generated historical
data in batch from the current data storage to the historical
data storage. As our data migration relies on the conven-
tional storage engine, we first review how the storage sys-
tem works in conventional DBMSs, then present the
historical data storage and its optimizations, and finally dis-
cuss the implementation of the late data migration.

5.1.1 Current Data Storage

Almost all popularly commercial and open-sourced RDBMSs
are MVCC-based, where an update of a record r does not
immediately cause a physical removal of r. Instead, r is
marked as a dead record and a link is built from r to the new
version r0. Multiple updates of records for the same entity
form a chain linked from one version (record) to its next ver-
sion (record).1 Given a transaction T , any operation of T over
the same entity seeks its oldest dead version via the index (if
any), and follows its link iteratively to find a proper version

that is visible to T based on the database isolation level [9],
[27], [35]. In legacy RDBMSs, a dead record r turns to be a
deleted record which is physically removed only if (1) r is not
visible to any running or incoming transactions, and (2) a vac-
uum cleaner thread starts to garbage collect r. For illustration
purposes, Fig. 2 shows an example of how versions of the
same entity are organized. Entity r1 has four versions labeled
from r1:1 to r1:4 stored across two data pages. r1:1 in Page#1 is
a deleted record that has been physically removed from the
current data storage, and migrated to the historical data stor-
age. r1:2; r1:3 are dead records, and a version chain is formed
from r1:2 to r1:3 and r1:3 to r1:4.

For brevity, dead records and deleted records are used to
denote historical records in current data storage and histori-
cal data storage, respectively.

5.1.2 Historical Data Storage

Motivated by the observation that updates of records typically
limit to few attribute values, rather than every attribute value
of a record, we then utilize the KV store as the historical data
storage. Different from the design in the current data storage
that maintains the entire record, the design in the historical
data storage expects to maintain the data changes of every
deleted record compared with its previous version (if any) so
as to reduce the storage overhead. For this purpose, we design
the historical data storage that is given in Fig. 3.

In our design, migration of records from the current data
storage to the historical data storage consists of two phases:
(1) data transformation (the top part of Fig. 3) and (2) data
compaction (the bottom part of Fig. 3). Data transformation
assembles dead records in the current data storage as the
key-value pairs, which are then written to the KV store.
Data compaction, which is periodically performed by the
KV store, re-organizes the key-value pairs produced in the
data transformation phase by only maintaining the data
changes of every deleted record compared with its previous
version (if any). It is worth mentioning that, we do not
directly write the data changes of deleted records into the
KV store during the migration. Instead, we split the migra-
tion into two phases. The reason is three-fold. First, data
transformation is fast and hence provides a high write
throughput. By doing this, it is lightweight to the original
RDBMSs; second, we encapsulate the write operations into
a transaction that is provided by the KV store to guarantee
the fault tolerance of the migration; third, similar to VAC-
UUM or PURGE, we do the maintenance of data changes of
deleted records in batch during the data compaction phase,
which is periodically performed by the KV store, and hence
reduces the maintenance cost significantly.

Fig. 2. An example of current data storage layout.

1. In some database systems, the link is built from one version to its
previous version. We emphasize that in these cases, our analysis still
holds.
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� Data transformation. As discussed before, a vacuum
cleaner thread in legacy RDBMSs is invoked periodically to
garbage collect dead records, wherein we migrate dead
records from the current data storage to the historical data
storage. We transform every dead record r to the key-value
format, which is then written to the KV store. We set its key
to the combination of the primary key of the corresponding
dead record, TT:st of r, and TT:ed of r. Obviously, the key
under this design is unique throughout the whole temporal
relation. We set its value by assembling all remaining attri-
bute values of r, CID of r, and UID of r. Note that in some
legacy RDBMSs, like MySQL, r only consists of the data
changes compared with the current record r0. In this case,
we complement r with the other attribute values from r0. By
doing this, we transform a dead record r to a key-value for-
mat by keeping complete information defined in the tempo-
ral model.
� Data compaction. Theoretically, to minimize the storage

space of deleted records, for each entity, we should store
every attribute value of its first deleted record, and for any
subsequent update/delete, we store data changes of the cor-
responding deleted record compared with its previous ver-
sion. In this way, however, retrieval of a certain deleted
record r0 incurs an expensive re-construction cost by assem-
bling the first deleted record with all data changes of previ-
ous versions of r0. To solve this problem, we carefully
design the historical data storage by making a proper trade-
off between the storage cost and query performance.

The logical layout of the KV store is shown in the bottom
left of Fig. 3. We maintain two kinds of deleted records,
namely anchor record, and delta record. An anchor record
maintains every attribute value of a deleted record, and a
delta record only maintains data changes of a deleted record
compared with its previous version. Retrieval of a certain
deleted record r0 invokes a seek of its most recent anchor
record r, and re-construct r0 by assembling r0 with all data
changes of versions from r to r0. To make a good trade-off
between the storage cost and the query performance, we
build an anchor record either periodically or reaching a cer-
tain number of delta records. Surprisingly, building a delta
record from the data transformation for each entity is not
trivial because the data changes of a delta record need to
capture the difference between the data transformation and
its previous version in terms of an anchor record. To solve

this problem, for the latest version of each entity, we main-
tain both the anchor record and delta record. Upon an
append of a deleted record r, we fetch the last anchor record
r0 of the entity, compute the data changes of r to r0, write one
anchor record of r with the other delta record of the data
changes to the KV store, and delete r0. To differentiate
anchor records with delta records in the KV store, as well as
boost the temporal query performance which is discussed
in Section 5.3, we concatenate one-bit character prefix, with
‘A’ as the anchor record and ‘D’ as the delta record, to the
key, shown in the bottom right of Fig. 3. Take an example
shown in Fig. 3. r1:1 is the first history record of entity r1
and r1:1 is set as an anchor record. Suppose we create an
anchor record for every i delta records. Thus, the subse-
quent records from r1:2 to r1:i are all delta records, while
r1:iþ1 is created as an anchor record. r1:iþ3 is the last deleted
record, and thus, we create both an anchor record and a
delta record for it. It is worth mentioning that, by introduc-
ing the prefix, every anchor record in the KV store is physi-
cally ordered before all delta records.
� Implementation. We migrate dead records from the cur-

rent data storage to the historical data storage during VAC-
UUM or PURGE which is periodically invoked by legacy
RDBMSs. To provide automatic data migration, we modify
the logic of the vacuum by introducing Migrate() func-
tion. Our implementation is said to be lightweight and
almost non-invasive in that we do not introduce new mod-
ules and simply copy the dead records, which are supposed
to be physically removed by the vacuum cleaner, to the his-
torical data storage. Besides, since the vacuum is invoked
periodically, we do data migration in a late and asynchro-
nous way.

Algorithm 1 gives the details about function Migrate().
We use variable SetðPÞ to represent a set of pages that con-
tain dead records to be migrated as the input and num to
store the number of migrated records as the output (line 1).
Each page in SetðPÞ containing dead records is sequentially
checked (line 3). In order to guarantee fault tolerance, for
each page, we use a transaction to ensure that the migration
of records in a page can be atomic and durable (line 4,11).
For any dead record r to be vacuumed in P, r is transformed
to a key-value pair (denoted as pair) by the function enco-

de2kv() (line 7), written to RocksDB, and deleted from the
current data storage (line 3-11).

Fig. 3. Logical layout of the KV store.
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Algorithm 1. Data Migration

1: Function Migrate ðSetðPÞÞ:
input: SetðPÞ, a set of pages which contain records to be

vacuumed;

output: num, the number of migrated records;
2: num 0;
3: for P in SetðPÞ do
4: KV_store::start(T );
5: for r 2 P do
6: if toVacuum(r) then
7: pair = encode2kv(r);
8: KV_store::put(T ; pair);
9: physically delete r from P;
10: num ++;
11: KV_store::commit(T );
12: return num;

Almost all key-value stores are LSM-tree based [33],
where the data compaction is periodically invoked to com-
bine the same key-value pairs from different files. We re-
organize the key-value pairs as anchor records and delta
records during the data compaction phase of the KV store
by introducing a new function, namely Compress(). In
our implementation, we use RocksDB [37] as the KV store.
Algorithm 2 shows the pseudocode of Compress(). We
use the variable it as the input, which is the iterator pointing
to the key-value pairs that are generated in the data trans-
formation but have not yet been re-organized as anchor or
delta records. To guarantee atomicity, we encapsulate Com-
press() function into a transaction (denoted as T ) pro-
vided by RocksDB (line 2). We seek the last anchor record
ita of the same entity that shares the same key it! key (line
4-5), and copy ita to kva. Note that key-value pairs from the
same entity are continuously stored in it. We obtain the
number of delta records of the entity since the most recent
anchor record except ita using the function getNumOfDel-

tas (line 6). In the real application, this value could be asso-
ciated with the last anchor record, i.e., ita, of the entity. We
then delete the last anchor record ita (line 7-8) and itera-
tively examine each key-value pair of the same entity (line
9-18) to generate either delta record (line 10-12) or anchor
record (line 13-14) by comparing the number of currently
generated delta records with a pre-defined threshold I . For
the last key-value pair of an entity, we generate both its
anchor record (line 18-19), and delta record (line 10-12), and
update the number of delta records (line 20). Finally, after
all key-value pairs pointed by it are processed, transaction
T commits (line 21).

As shown in Fig. 3, records r1:2 and r1:3 are transferred into
the key-value format and migrated to historical data storage
by calling Migration(). Later, an asynchronous data com-
paction is invoked, which re-organizes r1:2 as an anchor
record and creates an anchor record and a delta record for r1:3.

5.2 Transaction Time Maintenance

Setting the transaction-time for records in current data storage is
not trivial. Recall that in the temporal data model, each record
r associates a transaction time TT . Theoretically, when r is cre-
ated by a transaction T s, its TT:st should be assigned to the
commit time of T s. Similarly, when r is deleted/updated by

another transaction T e, its TT:ed should be set to the commit
time of T e. To enable fast query processing, legacy RDBMSs
do not maintain the commit time of the transaction that cre-
ates/updates/deletes with each record. In practice, it is ineffi-
cient to set the transaction time for all inserted/deleted/
updated records upon a transaction is committed because
they may not be in memory. Interestingly, SQL:2011 leaves
the transaction time up to SQL-implementations to pick up an
appropriate value. While many temporal implementations in
legacy RDBMSs, either pick up the start time of a transaction
or the time of a operation that inserts/updates/deletes the
record, we argue that this could potentially cause an incorrect
result based on the database isolation levels.

Algorithm 2. Data Compaction

1: Function CompressðitÞ:
input: it, the iterator points to the first record need to be
re-organized;

2: KV_store::start(T );
3: while it do
4: ita  KV_store::seekprev(it! key);
5: kva  copy(ita ! kv); key ðita ! keyÞ;
6: numd  KV_store::getNumOfDeltas(ita);
7: if ita ! kv ^ numd > 0 ^ ita:prevðÞ then
8: KV_store::delete(ita ! kv);
9: do
10: if mod(numd; I) then
11: KV_store::put (T , toDelta (it!kv ) );
12: numd ++;
13: else
14: KV_store::put(T , toAnchor(it!kv));
15: kva  copy(it! kv);
16: it it:nextðÞ;
17: while it ^ key ¼ it! key;
18: if mod(numd; I) then
19: KV_store::put(T , toAnchor(it!kv));
20: KV_store::setNumOfDeltas(it; numd);
21: KV_store::commit(T );

For these reasons,we propose a transaction statusmanager
that maintains status for transactions. For each transaction T ,
we maintain a transaction log including the commit time and
the transaction status (running/committed/aborted). Given a
transaction T , we insert the status of T into the manager
when T starts to execute, and update the commit time besides
the status of T upon T is committed/aborted. In our design,
since the size of each transaction log is fixed, we can efficiently
retrieve the log of a transaction using its ID. For example, the
log of a transaction with ID ¼ 10 is the 10th log in Page#1. By
doing this, we can fetch the transaction commit time on the fly
by searching the corresponding transaction status from the
transaction manager during either the data migration or the
temporal query processing. For example, we set the transac-
tion time TT:ed of a transforming record r to the commit time
of the transaction that updates/deletes r by searching it from
the transaction statusmanager.

5.3 Temporal Query Processing

In the query executor, as mentioned before, we rewrite the
valid-time queries into conventional queries while remain-
ing the transaction-time qualifiers unchanged in the query
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plan. Thus, in this section, we focus on the transaction-time
query processing with the objective to efficiently retrieve
current and historical records of interest, given that they are
stored separately. Unless otherwise specified, a relation
mentioned in this section is referred to as a transaction-time
relation.

Correctly answering transaction-time queries requires first
reconstructing snapshot(s) according to a given time point or
time interval, then retrieving all records that are visible in
this/these snapshot(s). Temporal data that satisfy the require-
ments specified in the query conditions are finally returned.
As defined in Section 3, transaction-time queries are divided
into three categories: (1) FOR TT AS OF time t, (2) FOR TT
FROM t1 TO t2, and (3) FOR TT BETWEEN t1 AND t2. For
ease of illustration, we refer to the first category as time-travel
query, the second and the third as time-slice query. For illustra-
tion purposes, we give an example below to show how a
transaction-time queryworks.

Example 4. Suppose there exist three entities, r1, r2 and r3
shown in Fig. 4. First, a transaction T 1 committed at time
t1 updates r1:1 to r1:2. Subsequently, another transaction
T 2 committed at time t2 updates r2:1 to r2:2, and r3:1 to r3:2.
Next, transaction T 3 committed at time t3 updates r1:2 to
r1:3, and r3:2 to r3:3; transaction T 4 committed at t4
updates r2:2 to r2:3. Suppose we issue a time-travel query
at time t03, as discussed above, we need to reconstruct the
snapshot at time t3. We then align all records that are visi-
ble in this snapshot, i.e., r1:3; r2:2; r3:3, as the query result.
If we issue a time-slice query between t0 and t2,
r1:1; r2:1; r3:1; r1:2; r2:2; r3:2 are returned since they are visi-
ble in one of the snapshots reconstructed at time t0, t1 and
t2 respectively.

As observed from Example 4, a transaction-time query
may require to retrieve both current records and historical
records from the database system. Specifically, retrieval of
current records follows the same logic like that in legacy
RDBMSs, while retrieval of historical records needs to be a
careful design. For historical records, on one hand, dead
records that have been deleted/updated but not yet been
migrated to the historical data storage, are still in the current
data storage. For these dead records, we need to retrieve
them from the current data storage; on the other hand, for
the deleted records that have been migrated from current
data storage to historical data storage, we retrieve them sim-
ply from the historical data storage. Note that we need to
carefully consider the retrieval order. If we first retrieve
deleted records in the historical data storage and then dead

records in the concurrent data storage, some records that
should be examined are lost due to the concurrent data
migration. To solve this problem, we make a reverse order
by first retrieving dead records in the current data storage,
and then deleted records in the historical data storage. By
doing this, we can guarantee the result are complete.
Although some results could be duplicated examined in
both current data storage and historical data storage, this
does not affect the correctness and we can issue a late de-
duplication to solve this problem.

Algorithm 3. Retrieving Dead Records

1: Function DeadRecReadðP; CÞ:
input: P , a data page; C, temporal condition;

output: SetðrecÞ, the result set;
2: rec the record in P from which we start to scan;
3: while rec do
4: if !SnapshotCheck(rec) then
5: rec nextðrecÞ;
6: continue;
7: if TemporalCheck(rec:TT; C) then
8: SetðrecÞ  SetðrecÞ [ frecg;
9: rec nextðrecÞ;
10: return SetðrecÞ;

� Retrieval of dead records.Remind inMVCC-basedRDBMSs,
the query executor invokes either sequential scan or index scan
to find records of interest. To do a sequential scan over a rela-
tionR, either every current record or dead record ofR is exam-
ined. To identify dead records of interest, we additionally
examine every dead record r whether or not it is visible to
given temporal constraints C based on Equations (1), (2), and
(3). Consider a temporal constraint C in a transaction-time
query. Cmaintains the instance time t, denoted as C:t, for time-
travel queries and the time interval t1; t2, denoted as C:t1; C:t2,
respectively, for time-slice queries.

Category 1. FOR TT AS OF time t

r:TT:st � C:t ^ r:TT:ed > C:t: (1)

Category 2. FOR TT FROM t1 TO t2

r:TT:st < C:t2 ^ r:TT:ed > C:t1: (2)

Category 3. FOR TT BETWEEN t1 AND t2

r:TT:st � C:t2 ^ r:TT:ed > C:t1: (3)

To do an index scan, the first version of each entity r is
identified, and the other dead records of r are sequentially
examined by following the version chain of the first version.
Similarly, whether r is visible to a given temporal con-
straints C is examined based on Equations (1), (2), and (3).
We develop function DeadRecRead() to fetch proper
dead records and Algorithm 3 shows the pseudocode. By
taking a data page P and temporal constraint C as the input,
we sequentially check records in P (line 2). We start to scan
from rec, which is either the first record in P or the record
pointed by the index. We check whether a record is visible

Fig. 4. Transaction-time query processing.
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to the current transaction’s snapshot (line 4–6) and satisfies
the given temporal constraints (line 7–8). If either of them is
violated, the next record is fetched by function nextðÞ (line
5,9) and continues to check on it. In sequential scan, func-
tion nextðÞ returns the next record on this page while in
index scan it returns the next record according to the ver-
sion chain. We introduce function TemporalCheck() to
examine whether a record rec satisfies the temporal con-
straints based on Equations (1), (2), and (3).

Algorithm 4. Retrieving Deleted Records

1: Function DeletedRecReadðSetðKÞ; CÞ:
input: SetðKÞ, a set of primary keys;

C, temporal condition;

output: SetðrecÞ, the result set;
2: if SetðKÞ=NULL then

// Check the secondary index

3: for idx 2 index do
4: if TemporalCheck(idx:value; C) then
5: SetðKÞ  SetðKÞ [ fidx:keyg;
6: for K in SetðKÞ do
7: ita  KV_store::seekprev(K; C);
8: kva; kvd  copy(ita ! kv);
9: do
10: if TemporalCheck(kva:TT; C) then
11: SetðrecÞ  SetðrecÞ [ fkvag;
12: if C:type = as_of then break;
13: if itd KV_store::seeknext(kva:key)

then SearchDelta(kvd; itd; C, SetðrecÞ);
14: while ita ita:nextðÞ^kva copy(ita!kv)
15: return SetðrecÞ;
16: Function SearchDeltaSetðKÞ; C:
17: num 0;
18: do
19: num++;
20: kvd  combine(kvd; itd ! kv);
21: if TemporalCheck(kvd:TT; C) then
22: SetðrecÞ  SetðrecÞ [ fkvdg;
23: if C:type = as_of then break;
24: while itd  itd:nextðÞ ^ num � I

� Retrieval of deleted records. To retrieve a deleted record of
interest, our basic idea is to invoke a seek of its most recent
anchor record r, and assemble r0 with all data changes of ver-
sions from r to r0. Thanks to this special design, queries with
primary keys specified in query conditions can be processed
efficiently. However, inmany cases, if there is no primary key
but the time interval specified in the query condition, the
above retrieval of deleted records cannot work properly. To
address this issue, we build a lightweight in-memory hash

index, shown on the left of Fig. 5. In this index, we set the
index key to the primary key of an entity. We set the index
value to the interval for each entity from TT:st of the first
anchor record to TT:ed of the last anchor record. By traversing
the index, we can obtain whether an entity has any historical
record that satisfies the temporal constraint by checking its
index value with the time interval specified in the query con-
dition. If an entity is verified as a candidate, we then follow
the same logic of that in transaction-time querieswith primary
keys specified to retrieve deleted records.

Algorithm 4 shows how to retrieve deleted records. In
function DeletedRecRead(), for queries without primary
keys specified, we scan the secondary index to find all quali-
fied entities and put primary keys of them into SetðKÞ (line
2–5). For each entity (line 6), we seek to the nearest anchor
record ita according to K and temporal conditions C (line 7–
8). We examine kva (line 10–12) and iteratively get all
remaining anchor records as well as records that have not
been compressed (line 14). We then seek to the following
delta record (if any) according to kva and iteratively fetch
delta records of interest through function SearchDelta()

(line 10). In function SearchDelta(), kvd is assembled
with a delta record itd  kv during iteration by calling func-
tion combine() (line 20) and every kvd that satisfies C is
copied into SetðrecÞ (line 22). Finally, the result set SetðrecÞ
returns (line 15). We shall give an example to illustrate
Algorithm 4. As shown in Fig. 5, an AS_OF query retrieves
all deleted records that are visible to the snapshot at time-
stamp ts=‘2019-11-22 00:00:00’. To do this, we first search
the in-memory hash index by examining each entity with ts
locating in interval [TT:st, TT:ed), and in this case, we find
the qualified entity is r1. We further seek to the closest
anchor record r1:j of entity r1 in the historical data storage
where TT:st of r1:j is less than ts and TT:st of r1:j0 , the next
anchor record of r1:j, is greater than ts. If ts is located in the
interval [TT:st, TT:ed) of r1:j, we return r1:j; otherwise, we
further seek to the first delta record r1:m with its TT:st is
greater than TT:ed of r1:j, and make a sequential scan from
r1:m until r1:n with ts locating in its [TT:st, TT:ed). Note that
we return the result by assembling r1:n with r1:j and all pre-
vious delta records of r1:n. In our example, we find r1:iþ2 is
the proper record and the result is assembled by r1:iþ2 and
r1:iþ1.

5.4 Discussion

In this section, we theoretically analyze the effect of interval
I on the space consumption of T-SQL. Note that I is the
number of delta records between every two adjacent anchor
records of the same entity.

Fig. 5. Retrieval of deleted records.
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For ease of illustration, letH be the collection of historical
records, M be the total number of entities in H, ri be an
entity in H. Further, we use CðHÞ, and CðriÞ to denote the
space consumption of H, and ri, respectively. Besides, we
use Cðrai Þ, and Cðrdi Þ to denote the total size of anchor records
and delta records of ri, respectively. Hence, for i 2 Nþ, we
have

CðHÞ ¼
XM
i¼1
CðriÞ ¼

XM
i¼1
½Cðrai Þ þ Cðrdi Þ�: (4)

For an entity ri, we denote its total number of historical
records asNi. Generally, for an entity ri, we denote the aver-
age size of an anchor record and a delta record as Sðrai Þ and
Sðrdi Þ, respectively. Hence, we have

Cðrai Þ ¼
�
Ni

I

�
� Sðrai Þ; Cðrdi Þ ¼ Ni �

�
Ni

I

��
� Sðrdi Þ:

(5)

In Equation (5), dNi
I e ¼ b

Ni
I c holds when Ni � I . Based on

Equations (4) and (5), we then have

CðriÞ ¼
�
Sðrai Þ � Sðrdi Þ

I þ Sðrdi Þ
�
�Ni: (6)

Because Sðrai Þ is always equivalent to or greater than Sðrdi Þ,
we can calculate the derivatives as

@CðriÞ
@I ¼ � ½Sðr

a
i Þ � Sðrdi Þ� �Ni

I 2
� 0;

@2CðriÞ
@2I

¼ 2� ½Sðrai Þ � Sðrdi Þ� �Ni

I 3
� 0:

(7)

Based on Equation (7), we conclude that for an entity ri, it
has positive gains on the storage consumption by increasing
I , but the gains diminish. Based on Equation (4), we argue
that this conclusion still holds forH. We also verify this con-
clusion in Section 7.1.

6 IMPLEMENTATION

In this section, we present the implementation of T-SQL in
PostgreSQL and Greenplum, which are open-sourced cen-
tralized and distributed RDBMSs, respectively. We release
our implementation publicly available via https://github.
com/dbiir/T-SQL.

6.1 Implementation in PostgreSQL

To enable temporal support in PostgreSQL, T-SQL extends
the query engine (including parser, query optimizer, execu-
tor), and add a component called transaction statusmanager.
� Parser. We first extend the parser to make it capable of

recognizing temporal qualifiers in function pg_parse_-

query(). Second, in function pg_rewrite_query(), we
update the syntax tree produced by the parser by translat-
ing valid-time operators into equivalent non-temporal oper-
ators, and keeping transaction-time operators unchanged.
� Query optimizer and executor. We extend the query opti-

mizer and executor tomake them capable of processing trans-
action-time operators. If there exist transaction-time operators
in the translated syntax tree, the query executor searches

temporal data of interest over both the current data storage
and the historical data storage. To do this, in function Exe-

cSeqScan() and ExecIndexScan(), besides the search of
current records and dead records of interest (Algorithm 3)
from the current data storage, we add function Delete-

dRecRead() to fetch deleted records of interest from the KV
store (Algorithm 4).
� Storage engine. We use the native heap-based storage in

PostgreSQL as the current data storage to maintain current
records and dead records. In PostgreSQL, every current
record or dead record contains all attribute values. We inte-
grate RocksDB into PostgreSQL to maintain deleted records.
To do this, in function PostmasterMain(), we addition-
ally start a RocksDB process when the PostgreSQL instance
starts. To interchange data between RocksDB and the query
executor, we employ the shared memory. When processing
a query, the query executor puts specific KV operations into
the shared memory. Worker threads in RocksDB then fetch
operations from the shared memory, execute these opera-
tions and give back results through the shared memory to
the query executor. We integrate the late data migration
into function heap_prune_chain() where the vacuum is
pruning a data page that contains dead records. Besides, we
encapsulate our proposed data compaction logic into func-
tion BackgroundCompaction() in RocksDB.
� Transaction status manager.We build a transaction status

manager based on CLOG, which is also called commit log in
PostgreSQL, to maintain transaction information. For each
transaction T , besides the transaction status (running/com-
mitted/aborted), we additionally maintain the commit time
of T in CLOG. The main modifications are in the source
code file clog.c.

6.2 The Extension to GreenPlum

Greenplum is a distributed database system mainly for ana-
lytics and technically built on top of PostgreSQL. There are
one master and several segments in a Greenplum cluster,
each of which is a PostgreSQL instance. The master is respon-
sible for query dispatching while the segments execute corre-
sponding sub-queries since data is partitioned and separated
in every segment. To enable temporal support in Greenplum,
the main issue is to extend the implementation in PostgreSQL
into a distributed manner. To do this, T-SQL first extends the
parser (in themaster) and the storage engine (in the segments)
as discussed in Section 6.1. Then T-SQL additionally adds a
component called timestamp oracle [34], [38], extends the
query executor to be capable of processing distributed tempo-
ral queries, and enables transaction status managers to record
the status of distributed transactions.

In order to uniformly assign timestamps for transactions,
we employ the timestamp oracle to assign timestamps in a
strictly increasing order. We implement the timestamp oracle
as a raft-based cluster to ensure high availability and provide a
robust timestamp allocation service. The timestamp oracle is
called by the master to request timestamps for transactions. A
temporal query is decomposed into several sub-queries in the
master and executed in corresponding segments individually.
In each segment, the implementation of sub-query execution is
according to Section 6.1. The master is responsible for coordi-
nating distributed transactions. Every transaction contacts the
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timestamp oracle once during the commit phase to set the
commit timestamp. We then introduce a transaction status
manager into the master and every segment to maintain the
status of distributed transactions. For a distributed transaction,
its transaction logs are stored in the master and all participant
segments. To do this,wemodify the query executor of themas-
ter in function CdbDispatchDtxProtocolCommand() to
transfer the commit timestamp of the current transaction to
corresponding segments when dispatching commit com-
mands. Subsequently, the commit timestamp of a transaction
is stored in its logs. In this way, a given transaction’s commit
time can be fetched directly from the local transaction status
manager and without additional network communication.
We also release our Greenplum-based implementation in our
repository.

7 EVALUATION

Our experiments are carried out on a server with an Intel 24-
core Xeon 2.4GHz CPU, 128GB Memory, and 480GB SSDs,
running a CentOS 7.4 operation system with kernel version
3.10.106. We compare T-SQL, which enables temporal sup-
port in PostgreSQL, with Oracle 11g, SQL Server 2017, and
MariaDB 10.3.11. We use the default configurations for the
temporal database systems, except that the buffer pool and
the thread pool are set to 8GB and 48, respectively if the sys-
tems provide these two parameters.

We conduct the experiments using the following one real
and three widely-used synthetic benchmarks. We use YCSB
benchmark to quantitatively evaluate the trade off between
the storage space and temporal query performance. Besides,
we use Tencent-RB to study the efficiency of T-SQL in a real
application and TPC-series benchmarks to compare T-SQL
with other common RDBMSs by introducing built-in tempo-
ral support.
� YCSB [14] is a synthetic benchmark modeling Yahoo!

Cloud Services, simulating large-scale Internet applications.
It contains a single table with a primary key and 10 other
columns. We create a YCSB table with 10 million records,
each of which occupies 1KB. By default, we set the total
number of transactions to 500,000 for each experiment run,
and calculate the throughput per second based on the total
execution time for these transactions. We use default set-
tings provided by the official YCSB tool with a default
workload, i.e., workloada (50% reads + 50% writes).
� Tencent-RB is a real benchmark abstracted from the Ten-

cent billing service platform. It has two relations, inwhich one
relation R depicts user account balances which are fairly sta-
ble with nearly 500 million of records while the other relation
W depicts the expense statements. We collect one month (30

days) data and run a query to examine the account balance
with the expense statement for each user per day.
� TPC-C [43] is a popular OLTP benchmark with a mixture

of read-only and update intensive transactions that simulate
the activities in order entry and delivery, payment process,
and stock monitoring. The major metric of TPC-C is tpmC,
which is measured by the number of new-order transactions
per minute. To support temporal data management, we add
transaction time as an additional attribute to each of nine rela-
tions in the benchmark. When a record is created/updated/
deleted, the start/end time of its transaction time is set to the
timewhen the transaction is committed.
� TPC-BiH [24] is a recently proposed benchmark, which

is particularly designed for the evaluation over temporal
databases. It builds on the solid foundations of the TPC-H
benchmark but extends it with a rich set of temporal queries
and update scenarios that simulate real-life temporal appli-
cations from SAP’s customer.

7.1 Evaluation on YCSB

We study the trade off between the storage consumption and
temporal query performance using the YCSB benchmark. We
first study the storage consumption by varying the interval
(denoted as I), i.e., the number of delta records between every
two anchor records, from 0 to 1000.We run theworkloada pro-
vided by YCSB for 6 hours with 4 client threads and plot the
throughput and storage consumption in Figs. 6a and 6b
respectively. As we can see, by introducing the delta records
that maintain data changes only, the storage consumption can
be reduced by 2.2� when I ¼ 10 and 2.9� when I ¼ 100,
respectively. We also observe that the storage consumption is
roughly coincident when I is set to 100 and 1000, respectively.
We confirm that although the storage consumption is reduced
by increasing I , there is an obvious trend of diminishing
return.

We further study the temporal query performance by vary-
ing the interval I . After we run the YCSB workloada for 1
hours,we invoke four typical temporal queries that are shown
in Table 2 and plot the running time in Fig. 6c. Note that t, t1,
and t2 denote the timestamp by running the YCSB workloada
for 30 minutes, 15minutes, and 45minutes, respectively. We
observe that the larger I takes, the longer running time con-
sumes. This verifies that the cost of assembling a historical
record is positively related to I . By properly leveraging the
performance and the storage consumption, we set I ¼ 100 in
the remaining experiments.

7.2 Evaluation on Tencent-RB

We first run a query to do daily account reconciliation on the
baseline and collect the query performance. As a comparison,

Fig. 6. Evaluation on YCSB.
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we transform the regular query into an equivalent temporal
query (as presented in Section 3), run it on T-SQL, and collect
the query performance as well. Fig. 7c shows the result by
comparing the performance of baseline and T-SQL. It can be
observed that T-SQL is in general significantly faster than the
baseline, ranging from 1.4� to 9.3�, depending on the data
size. In this one month duration, the performance of T-SQL is
less sensitive when the data size varies, and is always better
than the baseline. The main reason is the transformed tempo-
ral query eliminates the join of unnecessary data. The baseline
executes in two steps: (1) compute account changes by scan-
ning the whole relation R, in which the number of records is
about 500 million; (2) join all account changes with the
expense statements in W , in which the number of records is
shown in Fig. 7a. As T-SQL has already maintained the
changed accounts automatically, of which the number varies
from 2 million to 5 million, T-SQL only needs to join the
changed accounts with W , which results in much less join
computation than that of the baseline. Again, we can observe
a great degradation of storage consumption fromFig. 7b.

7.3 Evaluation on TPC-C

We study the effect by introducing the temporal support
on TPC-C benchmark for the conventional DBMSs. Let
tpmCtemporal and tpmCnon�temporal be the number of new-order
transactions per minute by running TPC-C workload in

conventional DBMSs with and without temporal support.
Note that all regular queries in TPC-C retrieve current data,
and we do not rewrite them to temporal DML queries. We
introduce a new metric, namely performance drop ratio,
which is defined as 1� tpmCtemporal

tpmCnon�temporal
, to do the performance

study.
Fig. 8 shows the effect on the drop ratios by varying the

number of data warehouses. From the figures, we make two
observations. First, the drop ratio of T-SQL is 7 percent on
average, and varies from 2 to 16 percent, showing that T-
SQL’s temporal implementation is lightweight. Second, the
drop ratio of T-SQL is comparable to that of Oracle when
the number of data warehouses varies from 256 to 512.
While the number of data warehouses reaches 1024, T-SQL
shows its superiority, achieving 4 to 21 percent smaller
drop ratio than Oracle. In all cases, the drop ratio of T-SQL
is significantly smaller than that of MariaDB and SQL
Server, further showing its lightweight feature. As repeat-
edly discussed before, T-SQL transfers the historical data in
batch only during the garbage collection, which is periodi-
cally invoked by the system, while the other systems manip-
ulate historical records and current records synchronously,
and hence results in smaller drop ratios.

7.4 Evaluation on TPC-BiH

We study the performance of various temporal implementa-
tions on TPC-BiH benchmark. The benchmark contains four
categories of queries, namely time-travel query, pure-key
query, bi-temporal query, and range-timeslice query. Each
category of queries contains 5 to 10 queries. We set the scale
factor to 1 and make 100,000 updates over TPC-BiH.

We report the running time in Figs. 9a, 9b, 9c, and 9d. For
answering time-travel queries, we observe that on average T-
SQL runs 2�, 5�, 30� faster than Oracle, SQL Server,
MariaDB, respectively. Interestingly, for answering pure-key
queries, SQL Server performs slightly better than T-SQL, fol-
lowed by Oracle, and MariaDB. Note that answering queries
Q11 andQ12 is the bottleneck to process the pure-key queries.

TABLE 2
Temporal Queries for YCSB Benchmark

Query Statement

Q1 SELECT * FROM R FOR TT AS OF tWHERE ID = id

Q2 SELECT * FROM R FOR TT FROM t1 TO t2 WHERE ID
= id

Q3 SELECT * FROM usertable FOR TT AS OF t

Q4 SELECT * FROM usertable FOR TT FROM t1 TO t2

Fig. 7. Evaluation on Tencent-RB.

Fig. 8. Effect on the drop ratio by introducing temporal support.
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Weobserve that scanning theCustom relation is the dominant
cost of answering query Q11 and Q12. Because the Custom
relation is seldom updated, scanning its current records is
much more expensive than scanning its historical records.
The reason why SQL Server performs slightly better than T-
SQL is that it makes various optimizations over the retrieval
of the current records.We argue that this paper focuses on the
efficiency of retrieving historical records, such optimizations
are orthogonal to our work. For answering bi-temporal
queries with both valid time and transaction time, and
answering range-timeslice queries that retrieve records with
transaction time locating between two points in time, as we
can see, the performance follows similar trends of that in
answering time-travel queries. The reason, as discussed in
Section 5, is that various optimizations are applied to the tem-
poral query processing including an efficient KV store, with a
secondary index built on the transaction time.

In summary, besides an enriched expressiveness, T-SQL
can achieve better query performance in many applications,
like account reconciliation. Compared with other temporal
database systems, T-SQL almost has theminimal performance
loss by introducing the temporal features, and performs the
best formost of the temporal queries.

8 CONCLUSION

In this paper, we present T-SQL, a lightweight yet efficient
built-in temporal implementation in database systems. Our
implementation not only supports the temporal features
defined in SQL:2011, but also makes an extension of the tem-
poral model. We propose a novel late data migration strategy
to manage current data and historical data in a very light-
weight way. We also develop a native operator to support
transaction-time queries with various optimizations. Exten-
sive experiments are conducted on both YCSB and TPC-series
benchmarks, and the results show T-SQL almost has minimal
performance loss by introducing the temporal features, and
performs the best formost of the temporal queries.
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