
The VLDB Journal (2024) 33:543–567
https://doi.org/10.1007/s00778-023-00821-0

REGULAR PAPER

RCBench: an RDMA-enabled transaction framework for analyzing
concurrency control algorithms

Hongyao Zhao1 · Jingyao Li1 ·Wei Lu1 ·Qian Zhang1 ·Wanqing Yang1 · Jiajia Zhong1 ·Meihui Zhang2 ·
Haixiang Li3 · Xiaoyong Du1 · Anqun Pan3

Received: 21 October 2022 / Revised: 30 April 2023 / Accepted: 20 October 2023 / Published online: 14 December 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Distributed transaction processing over the TCP/IP network suffers from the weak transaction scalability problem, i.e., its
performance drops significantly when the number of involved data nodes per transaction increases. Although quite a few
of works over the high-performance RDMA-capable network are proposed, they mainly focus on accelerating distributed
transaction processing, rather than solving the weak transaction scalability problem. In this paper, we propose RCBench,
an RDMA-enabled transaction framework, which serves as a unified evaluation tool for assessing the transaction scalability
of various concurrency control algorithms. The usability and advancement of RCBench primarily come from the proposed
concurrency control primitives , which facilitate the convenient implementation of RDMA-enabled concurrency control
algorithms. Various optimization principles are proposed to ensure that concurrency control algorithms in RCBench can
fully benefit from the advantages offered by RDMA-capable networks. We conduct extensive experiments to evaluate the
scalability of mainstream concurrency control algorithms. The results show that by exploiting the capabilities of RDMA,
concurrency control algorithms in RCBench can obtain 42X performance improvement, and transaction scalability can be
achieved in RCBench.

Keywords Concurrency control · Distributed transaction · Transaction scalability · RDMA

B Wei Lu
lu-wei@ruc.edu.cn

Hongyao Zhao
hongyaozhao@ruc.edu.cn

Jingyao Li
li-jingyao@ruc.edu.cn

Qian Zhang
zhangqianzq@ruc.edu.cn

Wanqing Yang
wanqingyang@ruc.edu.cn

Jiajia Zhong
zhongjiajia@ruc.edu.cn

Meihui Zhang
meihui_zhang@bit.edu.cn

Haixiang Li
blueseali@tencent.com

Xiaoyong Du
duyong@ruc.edu.cn

Anqun Pan
aaronpan@tencent.com

1 Introduction

The capability to support distributed transaction processing
in database systems is indispensable for many mission-
critical applications, such as e-banking and e-commerce.
However, it is generally believed that distributed transaction
processing over TCP/IP networks cannot scale [66]. That is,
the increasing number of involved data nodes per transac-
tion makes the system performance drop significantly. This
phenomenon is referred to as weak transaction scalability.
To show this phenomenon, we implement a two-phase lock-
ing concurrency control algorithm (a.k.a. 2PL) on distributed
framework Deneva [29] open-sourced by MIT, and conduct
an evaluation overYCSBbenchmark.We plot the throughput
by varying the number of accessed data nodes per trans-
action in Fig. 1. The throughput of distributed transaction

1 Renmin University of China, Beijing, China

2 Beijing Institute of Technology, Beijing, China

3 Tencent Inc., Shenzhen, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00821-0&domain=pdf

544 H. Zhao et al.

Fig. 1 The throughput drops sharply when the number of accessed data
nodes per transaction increases

processing decreases by a factor of 67.7% when the number
of accessed data nodes per transaction increases from 2 to 5.

The reasons that cause the weak transaction scalabil-
ity are two-fold. On the one hand, communications from
the coordinator to the participants increase heavily as more
accessed data nodes per transaction are involved, making the
system performance drop; on the other hand, coordinating
more nodes in each transaction would introduce additional
overhead, bottlenecked by the slowest one in the distributed
transaction processing. Interestingly, to the best of our knowl-
edge, none of the existing works directly target solving weak
transaction scalability. Instead, most of them target acceler-
ating the performance of distributed transaction processing.
For these works, they are divided into three categories.
Approaches of the first category attempt to either elimi-
nate distributed transactions or minimize their number as
much as possible. For these proposals, various partitioning
approaches and partition placement schemes [1, 2, 16, 21,
39, 44, 47, 50, 56, 67] are carefully designed so that par-
titions involved in the same transaction locate in the same
data node. Yet, static partitioning works only if the opti-
mal data placement is known a priori and never changes,
while dynamic partitioning often suffers from an expensive
data migration overhead. As opposed to the first category,
approaches of the second category directly optimize the exe-
cution logic of distributed transactions. To do this, variants
of 2PC are carefully designed to reduce the number of com-
munications. For instance, Early Prepare [49] eliminates the
prepare phase of 2PC, and hence, one round-trip from the
coordinator to the participants is reduced; besides, determin-
istic concurrency control algorithms [24–26, 36, 37, 41, 43,
53] can completely eliminate 2PC, and hence, two round-
trips from the coordinator to the participants are reduced;
despite these optimizations, the master-worker architectures
in these works are still bottlenecked by the high network
latency and coordination overhead, which hinder the trans-
action scalability. To alleviate the network and coordination
overhead in the second category, approaches [5, 14, 20, 60,
61, 64] of the third category adopt the shared-memory archi-

tecture, in which nodes are connected via RDMA-capable
networks, i.e., high-performance Infiniband networks with
the remote direct memory access (a.k.a. RDMA) capabil-
ity. As reported in [9], RDMA-capable networks provide
relatively comparable latency to main memory but take sig-
nificantly lower latency than TCP/IP networks. Thus, under
the shared-memory architecture, a worker is scheduled to
execute transactions entirely without the coordination of the
coordinators by reading/writing remote data items directly
via low-latency RDMA verbs. This idea is similar to that
in centralized systems, as opposed to dividing each dis-
tributed transaction into multiple sub-transactions in the
master-worker architectures.

In this paper, we aim to build a unified transaction frame-
work over RDMA-capable networks with two requirements.
Requirement R1: this framework must take full advan-
tage of RDMA-capable networks. Requirement R1 helps
verify whether re-implementations of concurrency control
algorithms are transaction-scalable when fully utilizing the
advantages of RDMA-capable networks. Requirement R2:
it is generic to re-implement mainstream concurrency con-
trol algorithms in this framework. Requirement R2 facilitates
achieving convenient re-implementations and a fair com-
parison among them. Thus far, although quite a few works
are proposed for RDMA-capable networks, they do not sat-
isfy either requirement R1 or requirement R2 or both. For
instance, the extensions of 2PL [5, 14, 61, 64] and optimistic
concurrency control (OCC) [20, 60] mainly focuses on lock-
ing/unlocking data items and validation, respectively. How-
ever, these works lack generality (requirement R2) because
applying any of them individually is not enough to re-
implement other concurrency control algorithms, e.g., such
as choosing proper versions of data items in multi-version
concurrency control algorithms (MVCC); additionally, some
implementations, e.g., DrTM-H [60], do not take full advan-
tages of RDMA-capable networks, which may potentially
affect the evaluation of transaction scalability.

To satisfy the above two requirements, we propose a
unified transaction framework called RCBench. To address
requirementR1,wemake a careful redesignof the data access
methods for concurrency control algorithms completely
using one-sided RDMA verbs, which take full advantage of
RDMA-capable networks but come with the limitation of
requiring prior knowledge of a data item’s address before
accessing it. To solve this problem, in RCBench, we care-
fully design a key-to-address index, with which, to access
a data item, we first obtain its remote address based on
its key, and then access the data item based on the remote
address using one-sidedRDMAverbs.Besides, existing opti-
mizations forRDMA-capable networks, including coroutine,
doorbell batching, outstanding requests, and passive ack are
integrated into RCBench.

123

RCBench: an RDMA-enabled transaction framework for… 545

To satisfy requirement R2, we collect the metadata for
each concurrency control algorithm and abstract six prim-
itives. Every concurrency control algorithm can be con-
veniently re-implemented by invoking the primitives on
its metadata, without directly touching the RDMA pro-
gramming but enjoying all advantages of RDMA-capable
networks. Because a concurrency control algorithm could
be re-implemented using a different set of primitives, or the
same set of primitives but with varying numbers of RDMA
verb invocations, we propose five optimization principles for
the re-implementations that aim to achieve transaction scala-
bility by minimizing the number of RDMA verb invocations.
Note that, our proposed primitives differ from those designed
in FaRM [19] which aim to speed up message communica-
tion, while ours are used for manipulating remote metadata
or data. Following these principles, we employ the primi-
tives to re-implement multiple mainstream state-of-the-art
concurrency control algorithms, including (1) widely-used
protocols such as 2PL [27]: No-Wait [7], Wait-Die [45],
Wound-Wait [45], T/O [6, 7, 45], and MVCC [62]; (2) mod-
ern protocols such as Silo [57], Maat [28], and Cicada [35];
(3) a deterministic protocol Calvin [53].

To answer the questions that whether or not the re-
implementations are transaction-scalable, and which re-
implementations achieve the best performance, we conduct
comprehensive experiments over the widely used bench-
marks. We report our findings below.

– In RCBench, it is convenient to re-implement the con-
currency control algorithms using our proposed six
primitives that enjoy all benefits of RDMA-capable
networks. Interestingly, some results show that our re-
implementations can even achieve a better performance
than some customized implementations under the same
settings.

– All re-implementations, except for Calvin, demonstrate
significant performance improvement (ranging from18X
to 42X) against their counterparts over TCP/IP networks.
The degree of improvement closely relies on the number
of primitive calls. Particularly, Silo is reported to perform
the best in most cases.

– Among all optimizations, the coroutine brings the great-
est performance improvement (1.7X to 2.5X). Besides,
the selection of appropriate lock types is also impor-
tant. For example, using a single type of exclusive lock
instead of exclusive/shared locks in 2PL can significantly
improve performance in moderate or low contention sce-
narios.

– Our experimental results show that transaction scalability
can be achieved.Wemust emphasize this finding is rather
important because, in this way, it is unnecessary to do
expensive data migration across data nodes in order to
eliminate distributed transactions.

2 Preliminaries

In this section, we first review the distributed transaction
processing and then discuss the background of RDMA tech-
niques.

2.1 Distributed transaction processing

In shared-nothing database systems, data are horizontally
partitioned, and data nodes are responsible for storing and
accessing the partitions that are assigned to them. These
systems adopt multi-coordinator system architecture to do
distributed transaction processing, such as Percolator [40].
Specifically, each coordinator individually (1) accepts the
transactions, (2) breaks the transaction into several sub-
transactions and distributes sub-transactions to the appro-
priate data nodes, also known as participants, for execution,
and (3) issues 2PC to coordinate the commit/abort of the
transaction. In step (2), each data node is equipped with a
database instance that manages the concurrent execution of
the sub-transactions in this node. In step (3), once all sub-
transactions decide to commit, the coordinator coordinates
the commit of the transaction; otherwise, it coordinates the
abort of the transaction.

2.2 RDMA

RDMA is a conceptual extension of direct memory access
(DMA) technology and has become an increasingly popu-
lar technique to accelerate the performance of a system. It
is capable of providing the following three properties. (1)
Zero-copy property. Applications can perform data trans-
fers without the involvement of the network software stack.
Data are sent and received directly to the buffers with-
out being copied between the network layers. (2) Kernel
bypass property. Applications can perform data transfers
directly from user space without kernel involvement. (3) No
CPU involvement property. Applications can access remote
memory without consuming any CPU cycles in the remote
machine. Although RDMA is supported on both Ethernet
and InfiniBand networks that provide the same common user
APIs for programming, RDMA over InfiniBand networks
provides much higher bandwidth and lower latency. Hence,
in this paper, we focus on RDMA over InfiniBand networks.

It provides two categories of verbs for programming: (1)
one-sided verbs, including READ, WRITE, WRITE With
Immediate, and two atomic operations: FETCH-And-ADD
(a.k.a. FAA) aswell asCOMPARE-And-SWAP(a.k.a.CAS),
and (2) two-sided verbs, including SEND and RECEIVE.
Programming using one-sided verbs enjoys all three proper-

123

546 H. Zhao et al.

Fig. 2 An overview of RCBench

ties of RDMA. For example, the atomic RDMA CAS allows
a machine to do compare-and-swap in the remote machine
atomically without any intervention of the remote CPU.Nev-
ertheless, programming using two-sided verbs can only have
zero-copy and kernel-passing properties. That is, two-sided
verbs still require CPU involvement of the remote machine.
Therefore, a one-sided verb always seems more favorable
than a two-sided verb.

Although one-sided verbs have all benefits of RDMA, in
programming, wemust know thememory address of the data
to be read/written in the remote node a priori. That is, we
may issue multiple one-sided verbs to obtain the memory
address in the remote node and issue another verb to do the
remote read/write using the remote address. On the contrary,
we can read/write a remote data item by issuing a single two-
sided verb without knowing its remote memory address. As
reported in Sect. 7.3, we observe that 10–20 one-sided verb
invocations are roughly equivalent to a single two-sided verb
invocation, and system throughput decreases as the number
of one-sided verb invocations increases. Therefore, in order
to fully leverage the advantages of RDMA-capable networks,
RCBench completely utilizes one-sided verb invocation to
access remote data while reducing the number of one-sided
verb invocations as much as possible.

3 Overview of RCBench

Figure2 presents an overview of RCBench, which processes
distributed transactions with the full benefits of RDMA-
capable networks. We have released its source code on
Github.1 RCBench adopts the shared-memory architecture

1 https://github.com/dbiir/RCBench.

Table 1 Symbols and their meanings

Symbol Meaning

X A data item

Xd The data value of X

X .PK The primary key of X

Xm The ItemMeta of X

T A transaction

T .T id ID of T

T l (T g) Local (global) metadata of T

T l .rs The read set of T

T l .ws The write set of T

T g .lock The lock used to prevent concurrent writes on T g

Xm .lock The lock used to prevent concurrent writes on Xd and Xm

[9], in which data items are horizontally partitioned using a
hash-based method. Each partition is assigned to one node
and maintained in its main memory, and all operations on
remote data items are executed via one-sided RDMA verbs.
In RCBench, multiple clients generate transactions and send
them to different servers in a round-robin fashion [29]. Each
server acts as both a data node equipped withMemStore and
a compute node equipped with multiple Txn executors. For
ease of illustration, Table 1 summarizes the notations used
throughout the paper.

3.1 MemStore

MemStore is a pre-allocated, RDMA-registeredmemory that
manages data items and provides auxiliary metadata to facil-
itate Txn executors in performing concurrency control. To
facilitate the access of data items and metadata, we con-
struct a key-to-address index on each node, where each index
entry records the primary key and the main memory address
of the corresponding data item residing in MemStore. Txn
executors traverses the remote index to fetch data items using
one-sided RDMA verbs. We will elaborate on the access of
data items in Sect. 4.1.

We organize MemStore into several memory blocks in
fixed-length, and maintain a bitmap f ree_space_map to
reflect the memory usage. In f ree_space_map, we use
1 bit to indicate the status of a memory block: 1 means
the block is used, while 0 means it is free. When insert-
ing or deleting a data item, we update the corresponding bit
in f ree_space_map atomically, which will be further dis-
cussed in Sect. 4.2.

123

https://github.com/dbiir/RCBench

RCBench: an RDMA-enabled transaction framework for… 547

Each data item X is stored in a fixed-lengthmemory block,
containing its correspondingmetadata Xm and data value Xd .
This allows remote Txn executors to access both Xm and Xd

with a single one-sidedRDMAverb. Formetadata, we design
the following two categories of metadata for performing con-
currency control.

– MetaItem Xm . Xm represents the metadata correspond-
ing to eachdata item X . For example, in 2PL, Xm includes
the ID of a running transaction that has ever written X ,
or the ID list of running transactions that have ever read
X , serving as the exclusive/shared lock identifiers. In
the real implementation, Xm is set as a fixed-length data
structure. By doing this, our access method guarantees
that Xm and T g can be fetched using a single one-sided
RDMA verb if we have the address of X . Suppose in
2PL, we store the ID list of transactions in Xm . Because
we cannot know how many transactions read each data
item X a priori, we create Xm with a very large list to
store them,which leads to a prohibitively expensive space
overhead. As a compromise, we set a proper size of the
list. When a transaction T attempts to acquire a shared
lock on X , and the ID list of Xm is full, we simply abort
T to ensure correctness.

– MetaTxn T l /T g . MetaTxn denotes metadata maintained
by a transactionT , including localmetadataT l andglobal
metadata T g . Local metadata T l can only bemanipulated
by the local Txn executors, so we store T l in the local
memory of Txn executors. In contrast, global metadata
T g can be accessed by remote Txn executors. For exam-
ple, in 2PL, T l maintains the transaction’s read/write sets,
and global MetaTxn T g contains the transaction status,
including running, aborted, or committed. We manage
T g similarly to data items and allocate fixed-lengthmem-
ory for each T g , which will be presented in detail in
Sect. 4.3.

3.2 Txn executor

Every Txn executor in our framework works like its coun-
terpart in the centralized system except that the former is
enriched with the capability to directly access the memory of
a remote node. After receiving a transaction T , a Txn execu-
tor processes T through two or three phases: 1) read/write
phase, 2) validation phase (if any), and 3) commit phase.
In the read/write phase, the Txn executor checks the condi-
tion, e.g., acquire a lock using 2PL, to read a data item X ,

or/and possibly write X . Before this, it is necessary to fetch
the address of X in the local/remote node through the key-
to-address index. In the validation phase (if any), the Txn
executor examines the conflicts between T and other con-
current transactions and determines whether or not T can
commit or abort. If T aborts, any modifications by T need to
be rollbacked; otherwise, any modifications by T need to be
persisted in MemStore.

Although it is general to abstract the execution of each
transaction through two or three phases, concurrency control
algorithms could have different logic to ensure transac-
tion correctness. Obviously, individual re-implementations
of them are inefficient for development, and more impor-
tantly, we attempt to make a fair comparison over these
re-implementations. For these reasons, we first collect the
metadata for each concurrency control algorithmand abstract
six primitives. Every concurrency control algorithm can
be conveniently re-implemented by invoking the primitives
on its metadata, without directly touching the RDMA pro-
gramming, but enjoying all advantages of RDMA-capable
networks. Because a concurrency control algorithm can be
re-implemented with a different set of primitives, or with
the same set of primitives but having a significantly different
number of RDMA verb invocations, aiming to achieve trans-
action scalability, we propose five optimization principles for
the re-implementations that are able to reduce the number of
RDMA verb invocations.

To further improve performance, we provide two transac-
tion processingmodes for Txn executor, including the thread-
to-transaction mode and coroutine-to-transaction mode. In
the first mode, a thread is created for one executor to exe-
cute transactions sequentially; in the secondmode, a thread is
composed ofmultiple coroutines, each ofwhich is created for
one executor to execute transactions sequentially. By using
finer-grained scheduling in the second mode, when a corou-
tine is blocked, the transaction execution can be switched to
another coroutine of the same thread. The scheduling over-
headof coroutines is significantly smaller than that of threads,
and hence, coroutine-to-transaction mode can achieve better
performance.

4 The access method

In this section, we present the access and maintenance
method of remote data items and global metadata completely
using one-sided RDMA verbs.

123

548 H. Zhao et al.

4.1 The access to remote data items

Asmentioned in Sect. 3, we develop an RDMA-friendly key-
to-address hash index I DX to manage data items on each
node. In general, reading or writing a data item is accom-
plished using two one-sided RDMA verbs. When accessing
a data item, given its primary key, we first retrieve the cor-
responding index entry using a one-sided RDMA verb and
then obtain the data item based on the address stored in
the index entry with another one-sided RDMA verb. How-
ever, additional one-sided RDMAverbs for fetching an index
entry are required when hash collisions happen, resulting in
increased network overhead. To address this issue, we adopt
the empirical methods from [38] and implement the hash
index I DX as an n-way Cuckoo hash table. With this hash
scheme, we apply n orthogonal hash functions, denoted as
hashk (k = 1, 2, ..., n), to assign n locations for a primary
key, indicating that every key is either at one of n possible
locations or absent. By default, we set n = 3, referring to the
optimal setting indicated in [38]. By iteratively examining
these n possible locations, we guarantee that an index entry
can be located using≤ n single one-side verbs. We elaborate
on how to fetch an index entry through I DX in detail:

In our design, we store an index entry as a triple X̂
of 〈X .addr , X .si ze, X .PK 〉 occupying 24 bytes, where
X .addr , X .si ze, and X .PK are the memory address, size,
and primary key of the data item X , respectively. Besides,
each index entry maintains a lock, occupying 8 bytes, to
prevent concurrent manipulation on I DX . By so doing, we
formulate the function get Rt I temAddr to fetch the appro-
priate index entry X̂ of a given key PK below: (1) we
calculate a locationusinghashk(X .PK) and issue anRDMA
READ to fetch its corresponding X̂ ; (2) we then return X̂ if
X̂ .X .PK = PK and X̂ is not locked by another transaction.
If X̂ has been locked by another transaction, we wait until
the lock is released. If X̂ .X .PK �= PK , we set k = k + 1
and re-execute (1)(2) until either finding a correct X̂ with
X̂ .X .PK = PK , or retrying until k = n − 1.

To support range queries, we adopt the approach pro-
posed in [30]. Specifically, we horizontally partition index
entries into several hash indexes based on the prefix of the
stored primary key. When querying data items with primary
key ranges from PKi to PK j , we traverse hash indexes
that exhibit intersection with the requested range to obtain
required index entries. To prevent phantom read anoma-
lies, we maintain an extra lock meta I DX .lock for each
hash index. Before/After the range query, shared locks are
acquired/released on involved hash indexes.

4.2 Themanipulation of remote data items

We elaborate on the manipulations of remote data items in
terms of insert and delete. Based on the design of I DX ,

inserting a new index entry 〈X .addr , X .si ze, PK 〉 of X
requires the following procedures. (1) First, n RDMA CAS
invocations are issued to concurrently lock n potential loca-
tions with addresses that are calculated by hashk(X .PK)

for k = 1, 2, ..., n. In case of any failure, additional RDMA
CAS are required to retry locking until success. (2) Then, we
issue n concurrent RDMAREAD invocations to obtain these
locations, and examine them locally. (3) If any free location
is available, an RDMA WRITE invocation is used to write
the new index entry into the corresponding location. (4) Oth-
erwise, insertion with preemption is executed by invoking an
RDMA WRITE to kick out and replace one of the existing
locations with the new one. (5) Finally, we release all prior
locks with n RDMA CAS invocations. Note that, if preemp-
tion exists in this procedure, similar steps are repeated to
insert the kicked-out entry. To prevent successive kicks, the
hash table will be resized to accommodate more data if the
number of kicks reaches a pre-defined limit [38].

Before insertion of the index entry, a free memory space
needs to be found for the data item X in the remote Mem-
Store. To do this, we issue an RDMA READ to fetch
f ree_space_map, identify one of the available memory
spaces based on it, and invoke an RDMA CAS to reset the
corresponding bit to 1 before writing X .

When deleting a data item X , we (1) issue n RDMA
READ to obtain index entries with addresses calculated
by hashk(X .PK) for k = 1, 2, ..., n. (2) use an RDMA
CAS to lock the target entry X̂ , and invoke another RDMA
READ afterward to confirm that X̂ has not been modified
by any other transaction. (3) clean X̂ from I DX with an
RDMA WRITE, and release the memory space of X by
issuing an RDMA CAS to update the corresponding bit in
f ree_space_map from 1 to 0.
In contrast to the shared locks for range queries in

Sect. 4.1, we acquire/release exclusive locks on hash indexes
before/after insert or delete operations to prevent the phan-
tom read. We will present the implementation of shared and
exclusive locks in Sect. 6.2.1.

4.3 The access to global metadata

Wemanage the globalmetadataT g in the samemanner as that
of data items, which occupies a fixed-length � of memory
space in MemStore. We use an n-way cuckoo hash table to
store the index entries of global MetaTxn T g . With this hash
table, the access, insert and delete procedures for a given
T g are basically the same as that of data items described
in Sects. 4.1 and 4.2. Each index entry is stored as a tuple
T̂ of 〈T g.addr , T .T id〉, where T .T id is taken as an inte-
ger. Besides, each index entry maintains a lock, occupying
8 bytes, to prevent concurrent manipulations. For reference,
we name the function used to obtain the appropriate index

123

RCBench: an RDMA-enabled transaction framework for… 549

entry T̂ of a given T id as get RtTgAddr , and omit its imple-
mentation as it is self-explanatory.

5 Concurrency control primitives

In this section, we first formulate the operation logic of con-
currency control algorithms in centralized database systems,
then abstract six primitives that take full benefits of RDMA-
capable networks, and finally extend the operations based on
the primitives to facilitate the re-implementations of concur-
rency control algorithms.

5.1 Operation abstraction in centralized systems

A transaction can be modeled as a sequence of read/write
operations, ended with a commit/abort operation. In the cen-
tralized database system, upon any read/write from/to data
item Xd , the concurrency control algorithms need to exam-
ine whether the transaction has the qualification to read/write
Xd by acquiring a lock on Xd in 2PL, or examine the times-
tamp on Xd in T/O, or others. To verify whether a transaction
can commit or needs to abort, the concurrency control algo-
rithmsmight need to do the validation, by either checking the
conflict between its read set and the write set of concurrent
transactions, or adjusting its timestamp interval based on its
concurrent transactions, or others. To do the commit/abort,
the concurrency control algorithms might need to release the
locks, and persist the write set of the transaction. For ref-
erence, we list the operations that are necessary for some
classic concurrency control algorithms in Table 2.

The execution of all operations in Table 2 can be formu-
lated into three steps, shown in Algorithm 1: (1) fetch data
item X (line 1), (2) perform the operation logic based on
X (line 2), and (3) update X if necessary (line 3). We take
a lock request on a data item X in lock-based algorithms
for an example to illustrate these three steps. To acquire a
lock on X , we (1) first fetch Xm , (2) then examine whether
the lock meta Xm .lock in Xm has been modified by other
transactions; (3) and finally update Xm by setting Xm .lock
to indicate that X has been locked by it if Xm .lock has not
been modified by other transactions.

Algorithm 1: Operation logic abstraction in centralized
database systems

1 Fetch Xd and/or Xm ;
2 Perform operation logic based on Xd and/or Xm ;
3 Update Xd and/or Xm if necessary.

Ta
bl
e
2

O
pe
ra
tio

ns
of

cl
as
si
c
al
go

ri
th
m
s.
E
ac
h
cl
as
s
of

al
go

ri
th
m
s
in
cl
ud

es
op

er
at
io
ns

in
vo
lv
in
g
m
ar
ki
ng

w
ith

a
�

Ph
as
e

O
pe
ra
tio

ns
L
oc
k-
ba
se
d
al
go

ri
th
m
s

O
C
C
al
go

ri
th
m
s

T
im

es
ta
m
p-
ba
se
d
al
go

ri
th
m
s

M
V
C
C
-b
as
ed

al
go

ri
th
m
s

R
ea
d/
W
ri
te

R
ea
d

�
�

�
�

W
ri
te

�
�

�
�

L
oc
k

�
T
im

es
ta
m
p-
E
xa
m
in
at
io
n

�
V
er
si
on

-R
et
ri
ev
al

�
V
al
id
at
io
n

R
ea
d/
W
ri
te
-S
et
-V
al
id
at
io
n

�
T
im

es
ta
m
p-
In
te
rv
al
-A

dj
us
t

�
L
oc
k

�
C
om

m
it

Pe
rs
is
t-
D
at
a

�
�

�
�

R
ol
l-
B
ac
k-
M
od

ifi
ca
tio

n
�

�
�

�
U
nl
oc
k

�
�

123

550 H. Zhao et al.

5.2 Primitive abstraction in RDMA-capable networks

Toextend the operations of concurrency control algorithms in
RDMA-capable networks, and make the underlying RDMA
programming transparent to developers,we abstract six prim-
itives, which are ReadD,WriteD, AtomicD for data items
and ReadT ,WriteT ,AtomicT for transaction’s meta items.
• ReadD (Primitive 1) is used to read remote X . In each
node, we maintain the address of I DX of every data node.
By taking PK as input, ReadD fetches X̂ by issuing
get Rt I temAddr function (line 1). If X̂ = NULL , ReadD

fails and returns NULL since X̂ does not exist (line 2); oth-
erwise, ReadD issues another RDMA READ to read and
return X via X̂ (line 3).

Primitive 1: ReadD(PK)

1 X̂←get Rt I temAddr(PK);

2 if X̂ = NULL then return NULL;

3 return RDMA_RE AD(X̂ .X .addr , X̂ .X .si ze)

• WriteD (Primitive 2) is designed to overwrite remote
X . Similarly, WriteD issues get Rt I temAddr function to
fetch X̂ (lines 1–2). If X̂ exists, then WriteD issues another
RDMAWRITE that writes the new value newV to X via X̂
(line 3).

Primitive 2: WriteD(PK , newV)

1 X̂←get Rt I temAddr(PK);

2 if X̂ = NULL then return false;

3 RDMA_WRIT E(X̂ .X .addr ,newV ,X̂ .X .si ze);
4 return true;

• AtomicD (Primitive 3) is designed to conditionally update
an item (specified by input parameter meta) of Xm , e.g.,
the lock of X (Xm .lock with meta = MT _LOCK) or the
read timestamp of X (Xm .r ts with meta = MT _RT S),
with the atomicity guarantee. Given PK , AtomicD issues
get Rt I temAddr to fetch X̂ (line 1). If X̂ exists, AtomicD

calculates the remote address X .meta_addr of meta by
addingmeta’s offset in Xm to X̂ .X .addr (line 3). and issues
RDMA CAS to conditionally update meta by new value
newV with atomicity guarantee (line 4).
• ReadT (Primitive 4) is designed to read remote T g . Taking
T id as the input, ReadT issues get RtTgAddr function to
fetch T̂ (line 1). If T̂ = NULL , ReadD fails and returns
NULL since T̂ does not exist (line 2); otherwise, ReadT

issues an RDMA READ to read T g via T̂ .T g.addr and �,
the length of data structure T g , and return T g (line 3).

Primitive 3: AtomicD(PK ,meta, oldV , newV)

1 X̂←get Rt I temAddr(PK);

2 if X̂ = NULL then return false;

3 X .meta_addr ← X̂ .X .addr + meta.of f set ;
4 t←RDMA_CAS(X .meta_addr , oldV , newV);
5 return t = oldV ;

Primitive 4: ReadT (T id)

1 T̂ ← get RtTgAddr(T id) ;

2 if T̂ = NULL then return NULL;

3 return RDMA_RE AD(T̂ .T g .addr ,�)

• WriteT (Primitive 5) is designed to write remote T g .
WriteT first issues get RtTgAddr function to fetch T̂ (lines
1–2), and issues an RDMA WRITE to overwrite T g with
newV (line 3).

Primitive 5: WriteT (T id, newV)

1 T̂ ← get RtTgAddr(T id) ;

2 if T̂ = NULL then return false;

3 RDMA_WRIT E(T̂ .T g .addr , newV ,�);
4 return true;

• AtomicT (Primitive 6) is designed to conditionally update
an item (specified by the input parameter meta) of T g , e.g.,
T g.lock, T g.st with atomicity guarantee. AtomicT fetches
T̂ by issuing function get RtTgAddr (lines 1–2), calculates
T g.meta_addr of meta by adding meta’s offset in T g to
T̂ .T g.addr locally (line 3) and issues an RDMA CAS to
conditionally update meta by new value newV with atom-
icity guarantee (line 4).

Primitive 6: AtomicT (T id,meta, oldV , newV)

1 T̂ ← get RtTgAddr(T id) ;

2 if T̂ = NULL then return false;

3 T g .meta_addr ← T̂ .T g .addr + meta.of f set ;
4 t←RDMA_CAS(T g .meta_addr , oldV , newV);
5 return t = oldV

5.3 Operation extension in RDMA-capable networks

With the above six primitives that take full benefits of
RDMA-capable networks, we extend the operations of con-
currency control algorithms in centralized database systems
to RDMA-capable networks. As for the access to remote data
items, we propose RDMA-BasicD shown in Algorithm 2 as

123

RCBench: an RDMA-enabled transaction framework for… 551

the extension. RDMA-BasicD takes the primary key PK of
a data item and current transaction T as the input. It (1) first
issues ReadD to read remote data items (line 4), (2) then per-
forms local logic based on X (line 7), and (3) finally modifies
X using WriteD (line 9). For example, to acquire a lock on
remote data item X in lock-based algorithms, we first use
ReadD to fetch Xm , then locally examine whether the lock
meta Xm .lock has been modified by other transactions, and
finally update Xm with Xm .lock using WriteD to indicate
that X has been locked if Xm .lock has not been modified by
other transactions. In our implementation, we acquire a latch
to ensure the atomicity of the three steps using AtomicD . As
shown in Algorithm 2, we issue an AtomicD to acquire the
latch of data item X (lines 2,3), and set Xm .latch to 0 to
release this latch (lines 8,9). As for the access to remote
global transaction metadata T g , we further propose RDMA-
BasicT shown in Algorithm 2 as the extension. We omit the
details of RDMA-BasicT which follow the same logic as
RDMA-BasicD.

Overall, RDMA-BasicD and RDMA-BasicT can be used
to implement all remote operations of mainstream concur-
rency control algorithms. We take lock-based algorithms
as an example, their operations, listed in Table 2, can be
implemented using the same three steps outlined in the lock
acquisition logic. The implementation of 2PL using RDMA-
BasicD and RDMA-BasicT is described in detail in our
technical report. 2 In conclusion, RDMA-BasicD can be used
to implement timestamp-examination, version-retrieval, and
read/write-set validation operations, and RDMA-BasicT can
be used to implement timestamp-interval-adjust operations,
covering all the operations mentioned in Table 2.

6 Design principles and Re-implementations
of concurrency control algorithms

6.1 Optimization principles

As discussed, remote operations of various algorithms can
be implemented with RDMA-BasicD and RDMA-BasicT
conveniently. However, since RDMA-BasicD and RDMA-
BasicT are general operations feasible for implementing all
the concurrency control algorithms, further optimizations are
required to fit the characteristics of different algorithms. We
introduce five optimization principles for RDMA-BasicD
and RDMA-BasicT, which either reduce the number of
one-sided verb invocations, or eliminate explicit latch acqui-
sition. By deeply customizing the re-implementations of
concurrency control algorithms using these principles, we
fully leverage the advantages of RDMA-capable networks to
achieve transaction scalability.

2 https://github.com/dbiir/RCBench/blob/master/RCBench.pdf.

Algorithm 2: Operation extension in RDMA-capable
networks
1 Function RDMA-BasicD(PK , T):
2 r ← AtomicD(PK , MT _L ATCH , 0, T .T id);
3 if ¬r then Abort T ;
4 X ← ReadD(PK);
5 if X = NULL then
6 AtomicD(PK , MT _L ATCH , T .T id, 0); Abort T ;

7 Perform local logic based on X ;

8 X̂m .latch ← 0;
9 WriteD(PK , X);

10 Function RDMA-BasicT(T idi , T):
11 r ← AtomicT (T idi , MT_L ATCH , 0, T .T id);
12 if ¬r then Abort T ;
13 T g

i ←ReadT (T idi);
14 if T g

i = NULL then
15 AtomicT (T idi , MT_L ATCH , T .T id, 0); Abort T ;

16 Perform local logic based on T g
i ;

17 X̂m .latch ← 0;
18 WriteT (T idi , T

g
i);

First, as discussed in Sect. 2.2, reducing the number
of one-sided verb invocations can improve performance.
As shown in Algorithm 2, both BasicD and BasicT require
three primitives to complete a remote operation. However,
depending on the characteristics of the algorithm, we find
that not all three primitives are necessary. For example,
the lock acquisition operation in lock-based algorithms can
be implemented using a single AtomicD . By eliminating
primitives in RDMA-BasicD based on the requirements
of various algorithms, we have designed four optimiza-
tion principles: One-Cas, One-Write, One-Read, which uses
only one AtomicD , WriteD , ReadD in RDMA-BasicD;
and Read-Cas, which uses a ReadD and a AtomicD in
RDMA-BasicD. These four principles are also applicable
to RDMA-BasicT. We provide an example of One-Cas,
Read-Cas, and One-Write in Sect. 6.2.1, and an example of
One-Read in Sect. 6.2.2, respectively.

– One-Cas. If an operation only modifies metadata with a
maximum of 8 bytes and knows the original and new val-
ues in advance, we can use a single AtomicD(AtomicT)

to modify this metadata.
– One-Write. If a transaction T has acquired a lock
or latch for the target metadata, T can directly use a
WriteD(WriteT) to write back the metadata modified.

– One-Read. If there is no need tomodify the remotemeta-
data, a single ReadD(ReadT) would be enough to read
it.

– Read-Cas. If an operation only modifies the metadata
with a maximum of 8 bytes, but its new value needs to
be calculated against the old value, we can issue one

123

https://github.com/dbiir/RCBench/blob/master/RCBench.pdf

552 H. Zhao et al.

ReadD(ReadT) to read back the metadata and another
AtomicD(AtomicT) to update it.

Second, explicit latch acquisition may reduce concur-
rency when accessing data items, incurring higher abort
rate. For example, the read operation in the T/O algo-
rithm can be performed without the explicit latch to improve
concurrency, as described in Sect. 6.2.3. To eliminate latch
acquisition, we design the Double-Read principle as follows.

– Double-Read. Double-Read is an alternative for atom-
icity guarantee other than explicit latches. Specifically, it
issues two ReadD(ReadT) before and after a potential
modification of the target metadata using an
AtomicD(AtomicT). If the content re-read is different
from the first one in an unexpected way, a concurrent
modification may have occurred. Note that the Double-
Read principle does not have the inherent capability to
prevent the ABA problem. Thus, when employing this
principle, users must ensure that the data information
modified using AtomicD(AtomicT) does not encounter
the ABA issue.

6.2 Re-implementations

Based on our proposed primitives and optimization prin-
ciples, we manage to re-implement mainstream algorithms
by minimizing the number of one-sided verbs and reduc-
ing explicit latch acquisition. To illustrate the detailed
re-implementation methods, we give examples of No-Wait,
Silo, and T/O algorithms in this section, and place the com-
plete descriptions of other re-implementations, including
Wait-Die, Wound-Wait, MVCC, MaaT, and Cicada, in the
technical report. The operations using the proposed princi-
ples are highlighted in pink.

6.2.1 No-wait

No-Wait [7] is a variant of 2PL concurrency control algo-
rithm. For any data item X , it always tries to acquire a certain
type of lock on X before any read or write on it and aborts
immediately in case of locking failures to avoid deadlocks.
Specifically, in the read/write phase of NoWait, for each read
of X , a shared lock is acquired on X , while for each write
of X , an exclusive lock of X is acquired. In the Commit
phase, we update the values of the data items that need to be
modified, and release all the locks.

To boost No-Wait using RDMA, it is necessary to re-
implement its logic that (1) acquire remote exclusive/shared
locks, (2) perform remote reads/writes, and (3) release remote
exclusive/shared locks. This involves creating a new lock
metadata, Xm .lock, in the metadata of each data item Xm .
The Xm .lock is a 64-bit value, where the least significant bit

is used to store the lock_t ype (0 for shared lock or SL, and 1
for exclusive lock or EL), and the remaining 63 bits store the
number of shared locks held on X (i.e., num_of _locks). By
doing this, we can acquire an exclusive lock on X by updat-
ing Xm .lock from 0 to EL, satisfying the requirements of
the One-Cas. And we can acquire a shared lock by adding 1
into Xm .lock.num_of _locks, satisfying the requirements of
the Read-Cas. As transaction T has already acquired locks
for data items when it enters the commit phase, the One-
Write principle is applicable for the commit phase. Besides,
MetaTxn T l maintains the read set T l .rs and write set T l .ws
of transaction T . Algorithm 3 exhibits the key functions of
the re-implementation RDMA-No-Wait.

Function AcqIMExcLock and RlsIMExcLock are used to
acquire/release an exclusive lock on X , which apply One-
Cas principle. We acquire/release the exclusive lock on X by
modifying the remote Xm .lock from 0/EL to EL/0 through
only one AtomicD (lines 2, 5).

Function AcqIMShLock uses the Read-Cas optimization
principle to acquire a shared lock. By taking its primary key
PK as the input, we first issue a ReadD to obtain Xm .lock
(line 7) and check whether there is an exclusive lock on X
locally (line 8). If there is, it fails to acquire the lock; other-
wise, we make a local copy newL of Xm .lock, and update
newL by recording a new shared lock on X (lines 11–12);
we then issue an AtomicD to update Xm .lock with newL
to declare that a new shared lock on X is granted (line 13).
Note that, AtomicD compares the remote Xm .lockwith local
Xm .lock and modifies remote Xm .lock to newL only if they
are the same; that is, if any changes to X have been made
between ReadDI (line 7) and AtomicD (line 13), the remote
write would fail, and the returned value r is set to be false
(line 14). Following the reverse logic of AcqIMShLock, func-
tion RlsIMShLock also uses this principle to release remote
shared locks (lines 15–20).

Function Commit is used to commit transaction T and
uses the One-Write principle. For each data item read before,
we sequentially release the shared locks that T has acquired
(lines 30–31) using RlsIMShLock. For each data item X in
the write set T l .ws, we update Xd with its new value, set
xm .lock to 0 locally, and issue a WriteD to overwrite the
remote X (line 33).

Functions Read and Write are used to do remote reads
and writes, respectively. For Read or Write, we first try to
acquire the lock on X with X .PK = PK , then read the
remote X if the lock acquisition success, and add X to the
local read/write set T l .rs/T l .ws. Note, for Write, we need
to update Xd locally before adding it into the local write set
T l .ws (line 27).
Discussion.As shown inAlgorithm 3, it requires at least two
primitive calls (ReadD and AtomicD) to acquire/release
a shared lock while it requires only one primitive call
(AtomicD) to acquire/release an exclusive lock. Based on

123

RCBench: an RDMA-enabled transaction framework for… 553

Algorithm 3: RDMA-No-Wait
1 Function AcqIMExcLock(PK):
2 r ←AtomicD(PK , MT _LOCK , 0, EL);
3 return r;

4 Function RlsIMExcLock(PK):
5 AtomicD(PK , MT_LOCK , EL, 0));

6 Function AcqIMShLock(PK):
7 X ←ReadD(PK);
8 if Xm .lock.lock_type = EL then
9 return false;

10 else
11 newL ←Xm .lock;
12 newL.num_of _locks++;
13 r ←AtomicD(PK , MT_LOCK , Xm .lock, newL);
14 return r;

15 Function RlsIMShLock(PK):
16 X ←ReadD(PK);
17 newL ←Xm .lock;
18 newL.num_of _locks – –;
19 r ←AtomicD(PK , MT _LOCK ,Xm .lock, newL);
20 if ¬r then goto line 11;

21 Function Read(PK , T):
22 if ¬Acq I MShLock(PK) then Abort T ;
23 X ←ReadD(PK);
24 T l .rs ← {X}∪ T l .rs;

25 Function Write(PK , newV , T):
26 if ¬ AcqIMExcLock(PK) then Abort T ;
27 X ←ReadD(PK); Xd ← newV ;
28 T l .ws ← {X}∪ T l .ws;

29 Function Commit(T):
30 foreach X ∈ T l .rs do
31 Rls I MShLock(X .PK);

32 foreach X ∈ T l .ws do
33 Xm .lock←0; WriteD(X.PK, X);

this observation, for the low-conflict application scenarios
where reads/writes on the same data item rarely occur, using
a single exclusive lock instead of exclusive/shared locks
could potentially bring performance benefits by reducing
extra remote primitive calls. To verify the benefits of using the
single exclusive locking mechanism, we make an extensive
experimental evaluation in Sect. 7.6, and the result shows that
single exclusive locking can outperform exclusive/shared
locking by a factor of 1.3X in the low-conflict application
scenarios. For this reason, in this paper, we adopt the single
exclusive locking mechanism instead of the exclusive/shared
locking mechanism by default. In the real implementation,
we collectively useAcqIMExcLock/RlsIMExcLock instead of
AcqIMShLock / RlsIMShLock in Algorithm 3.

6.2.2 Silo

Silo [57] is a classic optimistic concurrency control algo-
rithm. In Silo, each transaction T is scheduled to execute
through three phases: read/write phase, validation phase and
commit/abort phase. In the read/write phase, for each read of
X , we store X to read set T l .rs; for each write of X , we store
X to write set T l .ws. In the validation phase, ∀X ∈ T l .ws, it
needs to acquire an exclusive lock on X and check whether
X has been modified by other transactions. For ∀X ∈ T l .rs,
it checks whether X has been modified as well. If T cannot
acquire all the locks successfully or if there exists a data item
that has been modified by other transactions, we abort T and
release all the locks held by T ; otherwise, we commit T , and
∀X ∈ T l .ws, we accordingly update Xd and Xm .wts.

To boost Silo using RDMA,we re-implement its logic that
(1) do remote reads/writes, (2) acquire remote locks and val-
idate data items in the write set, and (3) validate data items
in the read set. For the logic of (1) and (3), they satisfy the
requirement of the One-Read principles as they do not mod-
ify metadata. In logic (2), Silo uses only the exclusive lock
mechanism, satisfying the requirement of the One-Cas prin-
ciple. To optimize the commit phase in the Silo algorithm,
we can use the One-Write principle, as in the No-Wait algo-
rithm.

To discuss the implementation of Silo in detail, we first
design the metadata Xm in Silo, including two fields: (1)
lock metadata Xm .lockb, recording the ID of a transac-
tion that is currently granted with an exclusive lock on
X ; and (2) Xm .wts, the maximum commit timestamp of
transactions that have ever written X . Besides T l .rs and
T l .ws, T l includes the commit timestamp (T l .cts) of trans-
actions T . Then we discussed the key functions of the
re-implementation called RDMA-Silo in Algorithm 4.

Functions Read andWrite are used to perform the remote
read/write on data item X by using One-Read principle. For
Read, we read remote X by using a ReadD , and add it to the
local read set T l .rs (line 2). ForWrite, we read remote X by
using a ReadD , update Xd locally, and add X to local write
set T l .ws (lines 4–5).

Function Validation is used to perform the operation in
the validation phase. First, we obtain a commit timestamp of
T locally. Then, ∀X ∈ T l .ws, we try to acquire an exclusive
lock on X following the One-Cas principle (line 9). If the
lock acquisition fails, T aborts; otherwise, we continue to
validate T . Subsequently, ∀X ∈ T l .ws ∪ T l .rs, we examine
whether X has been modified by other transactions based on
a One-Read principle to read X again by using ReadD (line
10–11). If X has been locked or modified, we abort T (lines
12–13).

Upon commit of T ,∀X ∈ T l .ws, wemake a single remote
write by issuing WriteD to release the lock on X , as well as

123

554 H. Zhao et al.

Algorithm 4: RDMA-Silo
1 Function Read(PK , T):
2 X ← ReadD(PK); T l .rs ← {X}∪ T l .rs;

3 Function Write(PK , T , newV):
4 X ← ReadD(PK); Xd ← newV ;
5 T l .ws ← {X}∪ T l .ws;

6 Function Validation(T):
7 T l .cts ← get the current timestamp;
8 foreach X ∈T l .ws do
9 if ¬AtomicD(PK , MT_LOCK B, 0,T.Tid) then

Abort T ;

10 foreach X ∈T l .rs ∪ T l .ws do
11 X ← ReadD(X .PK);

12 if X
m
.lockb �= 0 and X

m
.lockb �=T .T id then Abort T ;

13 if X
m
.wts �= Xm .wts then Abort T ;

14 Function Commit(T):
15 foreach X ∈ T l .ws do
16 Xm .wts ← T l .cts;
17 Xm .lockb←0;
18 WriteD(X.PK, X);

update Xd (lines 15–17). Upon abort of T , we only need to
release all the locks on ∀X ∈ T l .ws.

6.2.3 T/O

T/O orders transactions based on their beginning timestamps
(T l .bts). If the execution order of the transactions does not
match their beginning timestamp order, one of them needs
to abort. To compare the timestamp, each data item main-
tains the maximum beginning timestamp of the transactions
that have ever read/ written X (Xm .r ts/Xm .wts). For any
read on data item X of transaction T , if there does not exist
any conflicts, we update Xm .r ts to max{Xm .r ts, T l .bts};
for any write on X of T , if there does not exist any conflicts,
we update Xm .wts tomax{Xm .wts, T l .bts}. Upon a conflict
of T with some other transaction T over X , we abort T if
T l .bts < T

l
.bts, meaning that T is supposed to be ordered

before T but T reads/writes X that T has ever written3; oth-
erwise, T must wait to commit/abort after T commits/aborts
to guarantee correctness.

ToboostT/OusingRDMA, it is necessary to re-implement
its logic that performs (1) remote reads/writes on data item
X , (2) remote update of Xm .r ts or Xm .wts, and (3) wait-
commit or cascading abort. In logic (2) of RDMA-T/O, when
updating Xm .r ts, only 8 bytes of metadata are modified,
and the new value of Xm .r ts needs to be calculated against
the old value, satisfying the requirement of the Read-Cas
principle. Unfortunately, while a remote transaction is modi-

3 Specifically, for any read of T , we abort T if T l .bts < Xm .wts, and
for anywrite of T , we abort T if T l .bts < Xm .r ts or T l .bts < Xm .wts.

Algorithm 5: RDMA-T/O
1 Function UpdateRTS(PK , X , T):
2 if Xm .r ts < T l .bts then
3 AtomicD(PK , MT _RT S,Xm .r ts ,T l .bts);
4 Xm .r ts ←T l .bts;
5 if X �= ReadD(PK) then return false;

6 return true;

7 Function Read(PK , T):
8 X ←ReadD(PK);
9 if Xm .wts > T l .bts or Xm .lock �= 0 then

10 Abort T ;

11 if ¬UpdateRT S(X , PK) then Abort T ;
12 T l .bL ← Xm .wL ∪ T l .bL;
13 T l .rs ← {X}∪ T l .rs; return X;

14 Function Write(PK , T , newV):
15 if ¬ AtomicD(PK , MT_LATCH , 0, T .T id) then
16 Abort T ;

17 X ←ReadD(PK);
18 if max{Xm .r ts,Xm .wts } > T l .bts then
19 AtomicD(PK , MT _L ATCH , T .T id, 0);
20 Abort T ;

21 T l .ws ←{X}∪ T l .ws;
22 Xm .wts ←T l .bts; Xd ← newV ;
23 T l .bL ← Xm .wL ∪ T l .bL;
24 Xm .wL ← Xm .wL ∪ {T .T id };
25 Xm .latch ← 0; WriteD(PK , X);

26 Function CascadingAbortCheck(T):
27 foreach T id ∈ T l .bL do
28 do T ← ReadT (T id) ;

29 while T
g
.st = RN ;

30 if T
g
.st = AB then

31 T g .st ← AB; return f alse;

32 T g .st ← CM ; return true;

33 Function Commit(T):
34 if ¬CascadingAbortCheck(T) then Abort T ;
35 foreach X ∈ T l .ws do
36 while ¬AtomicD(X.PK, MT _L ATCH , 0,T .T id);
37 X ← ReadD(X .PK);

38 X
m
.wL ← X

m
.wL - T .T id;

39 X
m
.latch ← 0; WriteD(PK , X);

fying Xm .r ts, another write transaction may simultaneously
modify other metadata Xm .wts. Using the Read-Cas princi-
ple alone cannot ensure the atomicity of this modification.
To address this issue, we adopt the Double-Read principle
to ensure atomicity. This principle avoids the need for an
explicit latch and ensures the atomicity of the read opera-
tion. Furthermore, since logic (3) does not modify the remote
MetaTxn metadata, we can use the One-Read principle to
implement it.

The metadata Xm in T/O maintains four fields: (1)
Xm .latch, the latch of X to prevent concurrent modification,
(2) Xm .r ts/(3) Xm .wts, the maximum beginning timestamp

123

RCBench: an RDMA-enabled transaction framework for… 555

of the transactions that have ever read/written X , and (4) a
list Xm .wL , each item of which is the ID of an uncommitted
transaction that has ever written X . Besides T l .rs, T l .ws, T l

maintains the beginning timestamp T l .bts of T , and an extra
list T l .bL , recording transactions that are ordered before T .
T g additionally maintains a transaction status T g.st , which
is running (RN), committed (CM) or aborted (AB). Key
functions of the re-implementation called RDMA-T/O are
shown in Algorithm 5.

FunctionRead is used to do remote read using theDouble-
Read principle.Wefirst read X by issuing ReadD (line 8) and
checkwhether X is readable by T (line 9). If X is not readable
by T , we abort T (lines 10); otherwise, we try to do a remote
update on Xm .r ts using T l .bts, and perform another remote
read on X to check whether the remote update is successful
(lines 11, 2–6). If the update fails or the results of the two
ReadD operations are different, we abort T ; otherwise, we
perform a local update on T l .bL (the dependent transactions
of T) and store X in the read set T l .rs (lines 12–14).

Function Write is used to do remote write. We first
use AtomicD to acquire latch, then issue ReadD to read
back X and check whether X is writable by compar-
ing max{Xm .r ts,Xm .wts } with T l .bts (lines 15–20). If
max{Xm .r ts,Xm .wts } > T l .bts, meaning X is not writable
by T , then we release the latch and abort T (lines 18–20);
otherwise, it means that X is writable by T . We then store
the original X to the write set T l .ws for restoring X in case
that T aborts (line 21). Subsequently, we do a local update
on Xm .wts, Xd , T l .bL , Xm .wL (the running transactions
with writes on X), Xm .latch, and finally we apply the local
updates on remote X by issuing WriteD (lines 22–25).

Upon committing transaction T , it is necessary to execute
function CascadingAbortCheck to check the status of each
dependent transaction, maintained in T l .bL , of T (lines 27–
31). If any of them aborts, we would make a cascading abort
of T (lines 30–31); if all of them commit, we first set the
status T g.st of T to CM (line 32), use a repeated invocation
of AtomicD to acquire the latch of X (line 36), and do a
remote update of X

m
by removing T .T id from X

m
.wL for

each data item X that T has ever written (lines 37–39). Upon
abort of transaction T , it is necessary to restore its modifica-
tions maintained in T l .ws on each data item X that has ever
been written. Note, if a dependent transaction of T aborts,
and restores X that T has ever written, in this case, T cannot
restore X ; otherwise, the value of X would be restored incor-
rectly. For example, suppose there exists a data item X with
Xd = 1. Transaction T1 first updates Xd to 2, and transaction
T2 then updates Xd to 3. Subsequently, T1 aborts, and restore
Xd to 1. Because the abort of T1 causes a cascading abort of
T2, T2 aborts. In this case, if T2 does a restore of X which
changes Xd to 2, then X would be set in an incorrect value.
Discussion. One potential limitation of RDMA-T/O is that
cascading aborts could waste CPU cycles. To eliminate cas-

cading aborts, one possible solution is to postpone the writes
of each transaction T until the commit of T . In this case,
upon any read or write of X from T , if there exists another
uncommitted transaction T with a smaller timestamp that
writes X , T must wait until T commits. To notify the trans-
actions that wait for T , for each data item X , it is necessary to
additionally maintain two lists, Xm .pr L and Xm .pwL that
record the pending transactions with reads and writes on X ,
respectively. After T commits, we sequentially check each X
that T haswritten, and the transaction in Xm .pr L∪Xm .pwL
with the smallest timestamp is scheduled to execute,while the
other transactions still need to wait. Although the above solu-
tion can eliminate cascading aborts, it instead incurs other
potential overheads, e.g., the prohibitive maintenance over-
head of Xm .pr L and Xm .pwL for each data item X , as well
as a large amount of CPU idle time. For comparison, we
follow the work proposed by P.A.Bernstein and N.Goodman
[7] to adjust RDMA-T/Owithout cascading abort, and report
the experimental evaluation over the two implementations in
Sect. 7.6.

6.2.4 Deterministic algorithms

Calvin accepts and executes transactions in batches. In each
batch, it determines the order of transactions in a first-come-
first-serve manner. For each transaction T , if there does not
exist any transaction that conflicts with T and is ordered
before T , T is scheduled to execute. Note, inCalvin, no trans-
action is aborted because of conflict. To be specific, Calvin is
designed with three components to do concurrency control.

– Sequencer collects the transactions in batches. For each
batch, it determines the order of transactions, breaks
every transaction into several sub-transactions, and dis-
tributes sub-transactions to schedulers based on the data
items they access.

– Scheduler schedules sub-transactions to execute in a pre-
defined order. All sub-transactions attempt to acquire
locks on data items to be read/written. When different
sub-transactions apply for locks on the same data item,
the scheduler grants the locks to sub-transactions in a pre-
determined order. If all locks are acquired, we schedule
this sub-transaction to execute.

– Transaction executor executes sub-transactions. For
each sub-transaction T s, it performs local reads. For
another sub-transaction that belongs to the same trans-
action with T s, its writes may rely on reads of T s, the
transaction executor then synchronizes the reads to the
other sub-transaction if necessary. Finally, the executor
performs local writes and releases the acquired locks and
commits.

123

556 H. Zhao et al.

Fig. 3 Calvin overview

There are two opportunities to optimize Calvin using
RDMA: 1) distributing sub-transactions from sequencers to
schedulers, and 2) synchronizing reads among executors. For
illustration purposes, we show these two opportunities by
the blue lines in Fig. 3. For opportunity one, we implement
a circular buffer following FaRM [19] to replace the origi-
nal TCP/IP network message transmission mechanism. And
for opportunity two, we design a fixed-length read set buffer
stored in T sg for each sub-transaction T s. To do this, when
a sub-transaction T s1 on Node N1 synchronizes its read set
to another sub-transaction T s2 on the remote node N2, we
remotely write local read set into T sg2 .N2.rs by issuing a
WriteD . After T s2 gathers all read sets of remote nodes,
T s2 can continue to perform the execution.

Discussion. However, as reported in [29], network overhead
is comparatively trivial and not the bottleneck of Calvin.
Therefore, the above two optimizations cannot help effec-
tively improve the system performance, we argue using
RDMA to optimize Calvin cannot bring obvious benefits and
verify this observation in the experiment section. The same
reason in Calvin is also applicable for other deterministic
algorithms such as Q-Store [41], LADS [63] and QueCC
[42] whose network usage is quite limited.

6.3 Optimizations

To further optimize the performance of concurrency control
algorithms, we implement the following four optimizations
in RCBench.

– Coroutine. One thread can have multiple coroutines,
each of which executes transactions sequentially. Corou-
tines of the same thread are switched in a round-robin
manner upon one coroutine is blocked by waiting for the
results of RDMA verbs: Upon sending an RDMA verb
from one coroutine, another coroutine of the same thread
is switched to execute transactions. By using coroutines
in the Boost C++ library with low context switch over-
head (about 20 ns), we can reduce the CPU idle time, and
hence improve the throughput of each algorithm.

– Doorbell Batching (a.k.a.DB).Usually, a verb takes one
Memory Mapping I/Os (MMIOs). Instead, DB encapsu-
lates multiple verbs into a batch and calls a single MMIO
to send the beginning address of the batch. This address
serves as a ringing doorbell to notify RNIC to fetch the
batch through one or more DMAs. In this way, expensive
MMIOs are replaced by a low-cost CPU and bandwidth-
efficient DMA, therefore improving the performance of
each algorithm. Given a batch of verbs, DB works only
if there is no dependency among these verbs. For exam-
ple, we cannot batch ReadD with AtomicD in Function
AcqIMShLock (lines 7,13 in Algorithm 3) because the
inputs of AtomicD primitive rely on the result of ReadD

primitive. For this reason, we sequentially check the
primitives evoked by the concurrency algorithms and
batch continuous primitives without dependency using
DB. For example, we batch continuous AtomicD and
ReadD at lines 3,5 in Algorithm 5 in terms of the same
node to eliminate expensive MMIOs.

– OutstandingRequests (a.k.a.OR).RDMANIC(RNIC)
executes one-sided verbs sequentially, meaning that a
verb starts to be sent until the results of previous verbs
return. To improve the degree of concurrency, OR opti-
mizes the mechanism of message communication by
starting to send the verb upon the accomplishment of
sending the previous one. In our framework, based on
DB, we further optimize the batches to be sent to differ-
ent nodes using OR.

– Passive Ack (a.k.a. PA). In our framework, RNIC pro-
cesses RDMA verbs in a first-come-first-serve manner
with a reliable connection. Therefore, given a batch
of verbs, as long as we acknowledge the result of the
last verb, we can guarantee that the results of previous
verbs have also been returned. By doing this, redundant
acknowledgment for previous verbs can be eliminated
and hence save the bandwidth of RNIC. In our frame-
work, based on DB, we further optimize multiple batches
to be sent using PA.

7 Experiment

7.1 Setup

We use two popular OLTP benchmarks, YCSB [15] and
TPCC [55], to evaluate our re-implementations of concur-
rency control algorithms.

YCSB [15] is a comprehensive benchmark that simulates
large-scale Internet applications. Its dataset contains a sin-
gle 10-column relation, in which each tuple occupies 1KB.
The table is horizontally partitioned, and each node is set
to have a fixed number of 10 million records, resulting in
10GB of data per node. Each transaction of the workloads

123

RCBench: an RDMA-enabled transaction framework for… 557

is set to have a fixed number of 10 read/write operations
that access data items following the Zipfian distribution.
YCSB provides adjustable parameters to simulate workloads
with diverse characteristics. The skew factor parameter deter-
mines the degree of contention where the access of records
follows the Zipfian distribution. The write-ratio parameter
controls the ratio of write operations in transactions. Setting
the write ratio to 0.2 means that there are 80% reads and
20% writes among all transactions. In this scenario, there
might be approximately 10% (0.810 ≈ 0.1) read-only trans-
actions in the system, while the remaining 90% could be
mixed read/write transactions. Additionally, YCSBoffers the
(θ) parameter, which enables controlling the number of data
nodes that will be accessed per transaction. By default, we
set both the write ratio and the skew factor to 0.2, and set
θ to 2.

TPCC [55] is another OLTP benchmark that simulates
warehouse ordering applications. Its dataset contains 9 rela-
tions, and each warehouse is set to have 100MB of data. By
default, we set the number of warehouses per node to 32.
TPCC contains 5 types of transactions, among which Pay-
ment, New-order, and Delivery are read-write transactions,
Stock-level and Order-status are read-only transactions. As
Delivery, Stock-level and Order-status only involve local
operations, similar to previous works [29, 65], we focus on
Payment andNew-order only to evaluate the transaction scal-
ability of distributed transactions.

We evaluate our system on 4 machines of an RDMA-
capableEDRcluster. Each node is equippedwith one Intel(R)
Xeon(R) Gold 5220 CPU@ 2.20GHz (18 cores×2 HT) pro-
cessor, 128GB RAM, and one ConnectX-5 EDR 100Gb/s
InfiniBand MT27800. By default, each machine is assigned
one RCBench node and one client. Each RCBench node is
configured to have 4 threads to receive the transactions and
send the response from/to clients, and 24 threads to execute
transactions, each thread is set to have 8 coroutines. Each
client is configured to have 4 threads to generate new trans-
actions, and 4 threads to send the transactions and receive the
response to/from RCBench nodes. For each experiment, we
initiate a 30-second warm-up period followed by the collec-
tion of results for the subsequent 60 s.

7.2 Effective CPU utilization rate

In order to evaluate the efficiency of RCBench, we propose
a metric in this section to assess the extent to which our
designs take full advantage of RDMA. Specifically, by notic-
ing that the introduction of RDMA significantly reduces the
network overhead, it is widely recognized that the bottle-
neck has shifted from network to CPU in RDMA-capable
distributed clusters. The CPU utilization rate appears to be
a reasonable metric in this context. However, the existing
formulation of CPU utilization rate generally incorporates

0

 0.5

1

 1.5

2

3 6 9 12
0

 10

 20

 30

 40

 50

 60

 70

 80

22.7% 20.5% 17.7%
14.1%

A
vg

 e
ffe

ct
iv

e
C

P
U

 (
%

)

T
hr

ou
gh

pu
t (

10
3 T

xn
s/

s)

of nodes accessed per transaction

Avg effective CPU
Throughput
Abort Rate

0

 20

 40

 60

 80

 100

3 6 9 12
0

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000

1.6% 1.4% 1.5% 1.4%

A
vg

 e
ffe

ct
iv

e
C

P
U

 (
%

)

T
hr

ou
gh

pu
t (

10
3 T

xn
s/

s)

of nodes accessed per transaction

Avg effective CPU
Throughput
Abort Rate

Fig. 4 The throughput follows the same trend of Ue
CPU

irrelevant overheads, such as the thread/coroutine scheduling
costs, etc. As a result, they do not perform as a precise indi-
cator. To address this issue, we propose a new metric called
“effective CPU utilization rate (Ue

CPU)” to measure the actual
utilization of the CPU. The formula is shown below.

Ue
CPU=Effective time to execute committed transactions

Total time to execute transactions

Ue
CPU is defined as the proportion of total CPU execution

time spent on the execution of read/write and concurrent con-
trol operations of committed transactions. Specifically, time
spent on network communication, thread/coroutine coordi-
nation, and idle time is excluded from the calculation of
Ue
CPU. By tracing, breaking down, and averaging the time

spent on each operation in threads, we canmeasureUe
CPU and

use it to assess the effectiveness of our re-implementations.
The higher Ue

CPU is, the better RDMA is leveraged for effi-
cient transaction processing. After calculating Ue

CPU for each
node, we determine the average Ue

CPU of N nodes, denoted
as Ue

CPU, for the entire distributed system. Formally, Ue
CPU is

calculated as follows:

Ue
CPU =

∑N
i=1(Ue

CPU of node i)

N

Ue
CPU can be interpreted as the effective working time

per unit of time to execute committed transactions, which
is similar to throughput quantified by the number of com-
mitted transactions per unit of time. Figure 4a shows the
throughput, Ue

CPU and abort rate of 2PL algorithm in conven-
tional shared-nothing TCP/IP architecture. As the number
of accessed data nodes per transaction increases from 3 to
12, the Ue

CPU follows the same trend as that of the through-
put, verifying it as a reliable metric of our re-implementation
efficiency. Moreover, the abort rate decreases as the through-
put decreases, indicating that the drop in performance is not
attributable to aborts. For comparison, we plot the results of
RCBench under the same setup in Fig. 4b, which displays a
much stabler throughput, Ue

CPU, and abort rate.
Note that the CPU utilization metric proposed by Bin-

nig et al. [9, 66] is somewhat similar to our proposed Ue
CPU.

However, they mainly focus on CPU cycles consumed by

123

558 H. Zhao et al.

Fig. 5 A performance comparison between RDMA verbs

Table 3 A comparison of network types for YCSB workload

Algorithm TCP baseline +two-sided +one-sided

TPS(k) Ue
CPU AR TPS(k) Ue

CPU AR TPS(k) Ue
CPU AR σ

No-Wait 26.74 1.6 % 20.8 % 85.36 6.2 % 15.4 % 991.07(37.1X) 15.2 % 0.0 % 23.5

Wait-Die 31.03 2.1 % 13.4 % 85.64 7.2 % 7.8 % 807.78(26.0X) 13.7 % 0.8 % 30.2

Wound-Wait 27.98 1.9 % 6.9 % 85.02 6.5 % 10.3 % 714.57(25.5X) 15.6 % 0.0 % 31.2

T/O 32.10 2.3 % 1.4 % 85.66 6.9 % 1.4 % 853.63(26.6X) 17.5 % 0.5 % 25.4

MVCC 32.34 2.3 % 0.9 % 84.84 7.2 % 1.2 % 939.12(29.0X) 17.9 % 0.3 % 22.8

Silo 25.01 1.8 % 17.9 % 69.57 5.5 % 17.5 % 1071.59(42.8X) 18.8 % 0.3 % 17.7

MaaT 25.58 3.2 % 7.2 % 49.40 10.2 % 10.0 % 460.68(18.0X) 14.3 % 0.0 % 51.3

Cicada 27.11 2.1 % 3.5 % 82.62 9.5 % 2.4 % 720.66(26.6X) 15.4 % 0.3 % 32.2

Calvin 249.62 2.0 % 0.0 % 261.26 2.0 % 0.0 % 207.78(0.8X) 2.0 % 0.0 %

network communications itself. Instead, it is considered inef-
fective and excluded from Ue

CPU. Harding [29] discusses the
breakdown of distributed transaction executions in detail.
However, they do not identify ineffective works, and abstract
no concept concerning CPU utilization rate, which is differ-
ent from our idea of Ue

CPU.

7.3 Comparison between RDMA verbs

We investigate the efficiency difference between one-sided
and two-sided verb invocations. We assume that executing
a transaction requires either one two-sided verb or 5, 10,
15, 20, or 25 one-sided verbs, with each verb accessing a
fixed length of data, such as 1500 bytes. This is because
some algorithms, like Silo, require reading the metadata of
the same data items multiple times to check if it has been
modified by other transactions. To ensure fairness, both one-
sided and two-sided verbs are called sequentially, that is,
another one/two-sided verb cannot be called until the result
of the previous message is returned.

As shown in Fig. 5a, we plotted the throughput of transac-
tions that required either one two-sided verb or 5, 10, 15, 20,
or 25 one-sided verbs. The graph shows that when the data
access size is fixed at 1500 bytes, the throughput of one two-
sided verb transaction is equivalent to using 20 one-sided
verbs transaction. To further evaluate the performance of

one-sided and two-sided verbs, we plotted the latency and tail
(95th) latency of the transactions in Fig. 5c, d, respectively. It
can be observed that the latency and tail latency of one two-
sided verb transaction (yellow lines) are equivalent to that of
using 10 one-sided verbs transaction. Even when we adjust
the data access size from 20 to 2000, as shown in Fig. 5b, c, d,
the difference in throughput and latency between using one-
sided verbs and two-sided verbs remains consistent. Note that
the latency of two-sided verbs we have observed in our eval-
uation is considerably higher than those reported in [9, 38].
This disparity arises because the twoworks primarily concen-
trated on assessing the efficiency of one-sided and two-sided
verbs. In contrast, our experiments involving two-sided verbs
take into account additional factors, including the overhead
associated with CPU scheduling on remote machines. For
instance, after receiving a message, a remote machine must
place the message in a queue and allocate a Txn executor
to execute the message. Indeed, the choice of such a setup is
justified because two-sided verbs inherently involve the CPU
of the remote machine.

7.4 Effect of RDMA networks

We study the effect of RDMAnetworks on YCSB in terms of
throughput (TPS),Ue

CPU, and abort rate (AR). For illustration,
the re-implementations over TCP/IP Ethernet networks, two-

123

RCBench: an RDMA-enabled transaction framework for… 559

Fig. 6 Time breakdown under different networks

sided RDMA networks, and one-sided RDMA networks are
referred to as TCP/IP, two-sided, one-sided. Note, two-sided
is simply implemented by replacing the network invocations
in Deneva [29] with two-sided verb invocations.

The results are reported in Table 3. We use bold to high-
light the best throughput of each algorithm over the three
networks. As we can see, for TCP/IP, Ue

CPU is rather low,
ranging only from 1.6%−3.2%, leading to a poor through-
put; for two-sided, compared with TCP/IP, except Calvin,
Ue
CPU improves by at least 3.0X, causing an improvement

of throughput ranging from 1.9X to 3.2X; compared with
two-sided, one-sided further improves Ue

CPU and throughput
ranging from 1.4X to 3.4X and 8.4X to 11.6X, respectively.
This is because, in our framework, we completely eliminate
the expensive 2PC overhead and enjoy all benefits of RDMA
networks. Compared with TCP/IP, one-sided achieves a sig-
nificant improvement of throughput ranging from 18.0X to
42.8X except for Calvin.

To precisely analyze the reason why one-sided outper-
forms TCP/IP and two-sided, as shown in Fig. 6, we evaluate
the time breakdown for the eight algorithms except for
Calvin. We break down the execution time of a transac-
tion into five parts, including the read/write operations, the
validation operations, the commit operations, the abort oper-
ations, and the message communication time in all three
phases. As we can see, for each algorithm, TCP/IP and two-
sided consume almost all of the time to perform message
communication, while one-sided uses 28% (Cicada)—67%
(Wait-Die) of the time to perform remote one-sided verbs.
While the two-sided verb benefits from the high-performance
InfiniBand network, its message communication time is still
relatively long due to the additional overhead incurred by the
communication mechanism. This includes operations such

as message sending and receiving, thread/coroutine schedul-
ing before executing the message, and the creation of the
transaction context. These operations cannot be avoided by
two-sided verbs and contribute to the overall communica-
tion overhead. Thus, one-sided achieves such a high speedup
over the TCP/IP and two-sided variants. In Table 3, we can
observe that the one-sided variants have a much lower abort
rate (AR) than the TCP/IP and two-sided variants. This is
because one-sided variants have lower message communica-
tion time overhead, lower transaction processing time, and
lower concurrency conflicts with other transactions, making
them more efficient and less prone to conflicts and aborts.

In addition, for the throughput of different algorithms
under one-sided, Silo performs the best. The reason is that
the throughput is closely related to the averaged number (σ)
of primitive invocations per transaction. For reference, we
report σ for each algorithm in Table 3, showing Silo takes the
smallest σ . Often, a smaller σ leads to a higher throughput.
However, the complexity of concurrency control algorithms
may slightly affect the performance. For example, compared
with No-Wait, MVCC takes a slightly smaller σ but has a
lower throughput due to its complexity of traversing versions.
Note that in the current YCSB workload, each transaction
consists of 10 operations and accesses two nodes, which
means about half of the operations (approximately 5 oper-
ations) may be remote operations. In Table 3, σ represents
the total number of primitive invocations for approximately
5 remote read/write, 1 validation, and 1 commit operation
of a transaction. For two-sided, the same workload requires
7 rounds of two-sided network communication (5 remote
read/write + 1 validation + 1 commit operations), which
can be translated to about 70–140 one-sided verb invoca-
tions, as described in Sect. 2.2 and 7.3. Moreover, σ is not

123

560 H. Zhao et al.

Table 4 A comparison of
one-sided and two-sided RDMA
verbs combinations

Algorithm two-sided r/w co all

No-Wait 85.36 359.20 113.22 991.07

Wait-Die 85.64 387.28 139.39 807.78

Wound-Wait 85.02 384.48 110.39 714.57

T/O 85.66 106.98 96.14 853.63

MVCC 84.84 236.08 103.25 939.12

two-sided r/w va co r/w+va va+co r/w+co all

Silo 69.57 235.06 199.38 196.74 143.25 139.96 379.65 1071.59

MaaT 49.40 66.84 100.60 71.76 228.83 141.79 151.63 460.68

Cicada 82.62 163.87 126.83 126.04 345.63 169.23 215.82 720.66

Table 5 A comparison of
one-sided implementation with
different optimization

Algorithm one-sided + db&pa&or + coroutine + cor+db&pa&or

TPS(k) Ue
CPU TPS(k) Ue

CPU TPS(k) Ue
CPU TPS(k) Ue

CPU

No-Wait 991.1 15 % 1091.0 21 % 2274.3 78 % 2145.6 58 %

Wait-Die 807.8 14 % 928.9 20 % 1909.7 78 % 1749.6 60 %

Wound-Wait 714.5 16 % 907.7 19 % 1803.1 75 % 1771.7 60 %

T/O 853.7 17 % 887.7 18 % 1663.3 50 % 1706.3 50 %

MVCC 939.1 17 % 970.0 17 % 1839.6 48 % 1865.0 51 %

Silo 1071.5 19 % 1184.3 21 % 2383.4 73 % 2385.0 75 %

MaaT 460.7 14 % 531.9 15 % 796.7 42 % 791.7 37 %

Cicada 720.7 15 % 759.9 15 % 1492.3 54 % 1506.0 55 %

expected to increase significantly in the TPCC workload
since a New-order transaction has 5–15 remote read/write
operations, and a Payment transaction has only 2 remote
read/write operations. As opposed to the other concurrency
control algorithms, Calvin takes a similar throughput under
both TCP/IP and RDMA networks. This is because Calvin is
bottlenecked by its scheduler rather than the networks, while
RDMA is only used to alleviate the bottleneck by the net-
works. In the rest of the paper, we focus on one-sided and do
not report the results for Calvin.

7.5 Comparison with hybrid variants

Following the hybrid approach in DrTM+H [60], we study
the throughput under the combination of one-sided and two-
sided RDMA verbs, as shown in Table 4. Because the
lock-based algorithms and the timestamp-based algorithms
do not require the validation phase, we implement two extra
scenarios for these algorithms, only using one-sided verbs in
the read/write phase (r/w in Table 4) or the commit phase (co
in Table 4). For optimistic algorithms, we re-implement six
scenarios for them, using one-sided verbs in (1) the read/write
phase (r/w), (2) the validation phase (va), (3) the commit
phase (co), (4) the read/write and validation phase (r/w+va),
(5) the validation and commit phase (va+co), and (6) the
read/write and commit phase (r/w+co).

As we can see, by introducing one-sided verbs at some
phases, the throughput of most algorithms can be improved
but is still not comparable to that using one-sided verbs at
all phases (all in Table 4). The reason is that the hybrid vari-
ants still rely on two-sided verbs, which are subject to the
overhead of remote node participation and scheduling, thus
affecting performance. Therefore, in RCBench, one-sided
verbs are more suitable for promoting each algorithm.

7.6 Effect of various optimizations

7.6.1 General optimizations

We investigate the effect of applying optimizations including
coroutine, OR, DB, and PA. Table 5 reports the throughput
andUe

CPU by combining different optimizations.We use bold
to highlight the best throughput of each algorithm after opti-
mization. As we can see, by introducing DB, PA, and OR,
Ue
CPU and the throughput are improved slightly ranging from

1X to 1.47X and 1.03X to 1.27X, respectively; interestingly,
by introducing coroutine only, both Ue

CPU and throughput are
improved greatly, indicating that coroutine is a more impor-
tant optimization factor than the others; adding DB, PA, and
OR with coroutine can only improve Ue

CPU and throughput
of some algorithms, such as T/O and Cicada, by at most 2%,
while cannot bring benefits for the others. This is because the

123

RCBench: an RDMA-enabled transaction framework for… 561

Fig. 7 Effect of different lock types

Fig. 8 Effect with or without cascading abort

coroutine reduces the idle time of the CPU, which dominates
the benefit brought byDB, PA, andOR. Again, Silo performs
the best, followed by No-Wait and MVCC.

7.6.2 Variants of 2PL

We re-implement and compare variants of 2PL under two
types of locking mechanisms: exclusive/shared locking
(abbreviated as E/S lock) and exclusive locking (abbreviated
as E lock). The results are reported in Fig. 7. When the skew
factor ranged from 0 to 0.6, variants under E lock outper-
formed those under E/S lock. This is because E lock used
fewer one-sided verb invocations than E/S lock to acquire
locks. In a low contention scenario, the benefit of improv-
ing concurrency was outweighed by the overhead of conflict
examination. However, when the skew factor exceeded 0.7,
the abort rate of E lock increased more quickly than that of
E/S lock. This indicated that the benefit of improving con-
currency became comparable to, or even outweighed, the
overhead of conflict examination. In this scenario, E/S lock
performed better than E lock.

7.6.3 Variants of T/O

We plot the result of T/O with or without enabling cascading
abort in Fig. 8. As we can see, T/O with or without cascading
abort performs similarly, and in most cases, as opposed to
the phenomenon in the centralized environment, T/O with

cascading abort performs slightly better. This is because,
as shown in Fig. 8a, T/O without cascading abort consumes
extra one-sided verb invocations to manipulate two pending
lists (Xm .pr L and Xm .pwL), which is comparable to that
brought by the cascading abort.

7.7 Effect of contention levels

Weevaluate the performance by varying the skew factor from
0 to 0.95. The throughput and Ue

CPU under the low write-
ratio (write-ratio = 0.2) are reported in Fig. 10b and 10a,
respectively. As we can see, the throughput and Ue

CPU of
all algorithms remain relatively stable when the skew fac-
tor varies from 0 to 0.6. However, when the skew factor is
greater than 0.65, the performance of all algorithms drops
sharply. The optimal choice of the algorithm also tends to
change with the skew factor. While Silo excels under the
low and moderate contention (i.e., skew factor less than 0.8)
due to the same reason mentioned in Sect. 7.6, Cicada per-
forms the best under high contention, mostly attributable to
the multi-version mechanism it uses to enable concurrent
read and write operations. Figure10d, c reports the through-
put and Ue

CPU under the high write-ratio (write-ratio = 0.8),
respectively. The results follow a similar trend to those under
low write ratios.

7.8 Effect of write ratios

We evaluate the performance by varying write ratios from
0 to 1.0. Figure9b and 9a reports the throughput and Ue

CPU
under low contention (skew factor = 0.2), respectively. It
can be observed that with increasing the write ratio, the
throughput of Silo, Cicada, MVCC, and T/O drops slightly.
Because each read or write operation takes the same number
of primitive calls and acquires exclusive lock in No-Wait,
Wait-Die, Wound-Wait, and MaaT, the throughput of them
remains stable. We then report the results under high con-
tention (skew factor = 0.8) in Fig. 9d, c, respectively. Due to
the same reason, the throughput and Ue

CPU of No-Wait, Wait-
Die, Wound-Wait, and MaaT remain stable. However, the
throughput and Ue

CPU of Silo, Cicada, MVCC, and T/O drop
significantly with increasing the write ratio due to the high
contention level. Note that due to the multi-version mecha-
nism, Cicada performs the best when the write ratio is larger
than 0.2.

7.9 Scalability

Scalability is evaluated from two perspectives. First, wemea-
sure transaction scalability by varying the number (θ) of data
nodes to be accessed per transaction while leaving the total
number (N) of data nodes in the system to be constant. In
contrast, system scalability is measured with a fixed θ and

123

562 H. Zhao et al.

Fig. 9 The comparison of different contention levels

Fig. 10 The comparison of different write-ratios

Fig. 11 Transaction scalability

123

RCBench: an RDMA-enabled transaction framework for… 563

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

3 6 9 12

T
ot

al
 e

ffe
ct

iv
e

C
P

U
 (

%
)

Server count

Fig. 12 System scalability under YCSB

variedN . To fix θ , we follow the implementation in Deneva,
where the client knows the storage locations of all data items
based on their hash value and generates transactions with
fixed θ based on the storage locations of all data items.

7.9.1 Transaction scalability

We test the transaction scalability by varying θ from 3 to
12, and fixing N to 12. Each transaction is composed of 12

Fig. 14 Comparison with RDMA-based algorithms [60, 64]

read/write operations, with the percentage of remote oper-
ations fixed to 11/12. We report the throughput, total CPU
utilization rate (Σ = N ×Ue

CPU), and abort rate (AR) under
low contention (skew factor = 0.2) in Fig. 11b, a, c, respec-
tively. The throughput for different algorithms ranges from
1.0M TPS to 2.4M TPS, and for all algorithms, Σ as well
as the throughput drops rather slightly. We report the results
under high contention (skew factor = 0.8) in Fig. 11e, d, f,
respectively. For the same reason, Σ and the throughput
follow the same trend as those under low contention. This
finding verifies that our re-implementations of algorithms
using RDMA networks demonstrate arguably transaction
scalability.

Note the throughput in this experiment cannot be directly
compared with those of other experiments, for two reasons:
first, the number of YCSB operations is set to 12 in this
experiment, while it is set to 10 in other experiments; second,
while the transactions in this experiment involve 11 remote
operations, the transactions in the other experiments typically
involve around 5 remote operations.

7.9.2 System scalability

We evaluate the system scalability by varying N from 3 to
12 and fixing θ to 2. We report Σ under read-only work-
load, moderate contention (skew factor = 0.5) workload and
high contention (skew factor = 0.8) workload in Fig. 12a, c,

Fig. 13 System scalability under TPCC

123

564 H. Zhao et al.

e, respectively. As we can see, when N varies, Σ increases
linearly. Besides, for the same N , Σ drops slightly when
the contention increases. We also plot the throughput in
Fig. 12b, d, f, respectively. The results show that the through-
put increase linearly, which follows the same trend with Σ .
We plot the results over TPCC in Fig. 13a–d. As we can see,
the result follows a similar trend to that over YCSB.

7.10 Comparison with other RDMA-based
algorithms

To show the effectiveness of our re-implementations, we
compare Silo against DrTM+H [60], another RDMA-based
re-implementation of Silo, and compare No Wait, Wait Die,
and Wound Wait against DSLR [64], another RDMA-based
re-implementation of 2PL variants. We report the compari-
son in Fig. 14. It can be observed that our Silo outperforms
DrTM+H in terms of both throughput andUe

CPU significantly.
Besides, there is anobvious trendof growing returnswhen the
number of threads increases. This is because, in DrTM+H,
the remote accesses in the validation phase and the com-
mit phase are all implemented using two-sided verbs, while
in our work, we optimize all the remote accesses completely
using one-sided verbs, thus improvingUe

CPU and the through-
put significantly. In addition, as we can see, our No-Wait
under E/S lock mechanism performs better than DSLR, and
our Wait-Die and Wound-Wait take a similar throughput as
DSLR. This is because DSLR consumes a similar number
of one-sided verb invocations as Wait-Die and Wound-Wait,
while No-Wait consumes the smallest one-sided verb invo-
cations. However, the throughput and Ue

CPU of Wait-Die and
Wound-Wait drop significantly when the number of threads
is greater than 32. This is becauseWait-Die andWound-Wait
maintain a fixed size of Xm .pL , which causes extra aborts
of transactions under the high contention levels. Addition-
ally,we evaluated the transaction scalability of the algorithms
in RCBench and compared them with the DrTM+H sys-
tem, as shown in Fig. 15. We observed that although both
the algorithms re-implemented in RCBench and DrTM+H
can achieve transactional scalability, RCBench ensures up
to 1.1X better transaction scalability than DrTM+H. More-
over, the throughput of concurrency control algorithms in
RCBench, such as Silo and No-Wait, is higher than that in
DrTM+H.

7.11 Summary

After conducting extensive evaluations, we summarize the
major experimental findings below.

1. Transaction scalability can be arguably achieved
(Sect. 7.9.1).

Fig. 15 Transaction scalability compared with RDMA-based algo-
rithms

2. Concurrency control algorithms can achieve system scal-
ability. (Sect. 7.9.2).

3. For the same algorithm, Ue
CPU is the dominant factor to

scale out distributed transaction processing (Sect. 1 and
7.9).

4. It is practical and convenient to re-implement concur-
rency control algorithms using our proposed primitives,
and even performs better than some customized imple-
mentations in many cases (Sect. 7.10).

5. Optimizing Calvin using RDMA cannot bring obvious
benefits (Sects. 6.2.4 and 7.4).
For other algorithms, RDMA networks bring significant
performance improvement, and the degree of improve-
ment closely relies on the number of primitive invocations
and metadata complexity. Based on these criteria, Silo is
reported to be the best in most cases (Sects. 7.4, 7.7 and
7.8).

6. Among all optimization techniques, coroutine brings
the maximal performance improvement (1.7X to 2.5X).
For 2PL variants, single exclusive locking is preferred
in moderate or low contention scenarios, while exclu-
sive/shared locking is preferred in high contention sce-
narios (Sects. 7.6.1 and 7.6.2).

7. Optimizations in the centralized environment may not
workwell inRDMAnetworks due to a prohibitive number
of primitive invocations,
e.g., RDMA-T/O (Sect. 7.6.3).

8 Related work

To the best of our knowledge, this is the first to compre-
hensively evaluate the transaction scalability of concurrency
control algorithms using RDMA-based primitives. Our study
is related to previous works on 1) transaction scalability
evaluations of concurrency control algorithms over TCP/IP
networks and 2) optimizations for them using RDMA net-
works.

123

RCBench: an RDMA-enabled transaction framework for… 565

We have witnessed a wide spectrum of concurrency con-
trol algorithms to guarantee the serializable isolation level.
Because there does not exist a single algorithm that can
perform the best in all scenarios, figuring out the best algo-
rithm for a specific application scenario naturally becomes
an important problem. A few works [3, 8, 10, 11, 52, 54]
make theoretical analyses over the benefits of different kinds
of algorithms. More works are proposed to put concurrency
control algorithms in the same centralized framework to do
evaluations [13, 22, 31–33, 51, 62, 65]. Recently, there is an
increasing interest in evaluating algorithms for distributed
transaction processing [11, 12, 29]. The results show that
these algorithms cannot achieve transaction scalability due
to the limitations of slownetwork and coordination overhead.
There are also several works [4, 16–18, 21, 23, 34, 39, 46,
48, 53, 59, 68] that focus on improving the system scalabil-
ity. The intuitive idea is to transform distributed transactions
into local transactions by carefully designing locality-aware
partitioning approaches. Yet, static partitioning works only if
the optimal data placement is known a priori, while dynamic
partitioning often suffers from an expensive data migration
overhead.

Using RDMA networks to optimize concurrency con-
trol algorithms has become a hotspot in both academia
and industry. Most of them are tailored for some particu-
lar concurrency control algorithms. Dragojevi et. al. [19, 20]
implement a distributed in-memory database called FaRM
and leverage one-sided verbs to optimize Silo. DrTM+H
[60] also re-implements Silo and additionally proposes opti-
mizations based on hybrid one-sided and two-sided verbs.
NAM-DB [9] optimizes the snapshot isolation algorithm,
which can only achieve the snapshot isolation level. To
achieve the serializable isolation level in NAM-DB, a com-
plete redesign of the concurrency control algorithm using
RDMA is required. A few works [5, 14, 61, 64] concen-
trate on optimizations of 2PL algorithms. More related to
our work, Wang et al. [58] builds a unified framework to
re-implement and evaluate the concurrency control algo-
rithms using RDMA. Yet, this framework lacks generality,
making each algorithm implemented from scratch indepen-
dently. Moreover, the evaluation in this framework mainly
focuses on the performance with a fixed number the data
nodes accessed per transaction. Different from the above
works, we focus on transaction scalability under the seri-
alizable isolation level. We first explore the dominant factors
to scale out distributed transaction processing and propose a
general framework RCBench using one-sided RDMA verbs
only, enjoying all benefits of RDMA networks. To enable
the implementation of various algorithms, we introduce six
primitives and five optimization principles. RCBench uti-
lizes the TCP/IP implementation in Deneva [29] to compare
TCP/IP algorithmvariantswith one-sided algorithmvariants.
Compared to Deneva, RCBench is built on a shared-memory

architecture on topof theRDMAone-sided network,whereas
Deneva is a shared-nothing system entirely implemented on
the TCP/IP network. In comparison with NAM-DB [9], both
RCBench and NAM-DB are built on the RDMA one-sided
network. However, RCBench adopts a shared-memory archi-
tecture, while NAM-DB uses a compute-storage separation
architecture known as network-attached memory. Further-
more, based on RCBench, we provide an additional six
primitives and five principles that enable developers to use
one-sided RDMA verbs to enhance different algorithms.

9 Conclusions

In this paper, we investigate the problem of whether it is
scalable to process distributed transactions using RDMA
networks under serializable isolation level. We observe that
Ue
CPU is the dominant factor to scale out distributed transac-

tions. To improve Ue
CPU, we first propose a framework with

six abstracted primitives using one-sided verbs. We then re-
implement state-of-the-art concurrency control algorithms
with various optimizations simply based on the primitives.
Our implementations can enjoy all benefits of RDMA net-
works. Finally, we conduct a comprehensive experimental
study of the transaction scalability of our implementations.
We list a few findings that have not yet been reported
elsewhere. We are confident that these findings provide a
potential guideline to develop highly scalable distributed
databases.

Acknowledgements The paper is supported by the National Natural
Science Foundation of China under Grant No. 61972403, and the paper
is supported by Public Computing Cloud, Renmin University of China.

References

1. Abebe, M., Glasbergen, B., Daudjee, K.: Dynamast: adaptive
dynamic mastering for replicated systems. In: 36th IEEE inter-
national conference on data engineering, ICDE 2020, Dallas, TX,
USA, April 20–24, 2020, pp. 1381–1392. IEEE (2020). https://doi.
org/10.1109/ICDE48307.2020.00123

2. Abebe, M., Glasbergen, B., Daudjee, K.: Morphosys: automatic
physical design metamorphosis for distributed database systems.
Proc. VLDB Endow. 13(13):3573-3587 (2020). https://doi.org/10.
14778/3424573.3424578

3. Agrawal, R., Carey, M.J., Livny, M.: Concurrency control per-
formance modeling: alternatives and implications. ACM Trans.
Database Syst. 12(4), 609–654 (1987)

4. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and
horizontal partitioning into automated physical database design.
In: SIGMOD Conference, pp. 359–370. ACM (2004)

5. Barthels, C., Müller, I., Taranov, K., Alonso, G., Hoefler, T.: Strong
consistency is not hard to get: two-phase locking and two-phase
commit on thousands of cores. Proc. VLDB Endow. 12(13), 2325–
2338 (2019)

6. Bernstein, P.A., Goodman, N.: Timestamp-based algorithms for
concurrency control in distributed database systems. In: VLDB,
pp. 285–300. IEEE Computer Society (1980)

123

https://doi.org/10.1109/ICDE48307.2020.00123
https://doi.org/10.1109/ICDE48307.2020.00123
https://doi.org/10.14778/3424573.3424578
https://doi.org/10.14778/3424573.3424578

566 H. Zhao et al.

7. Bernstein, P.A., Goodman, N.: Concurrency control in distributed
database systems. ACM Comput. Surv. 13(2), 185–221 (1981)

8. Bhide, A., Stonebraker, M.: A performance comparison of two
architectures for fast transaction processing. In: International Con-
ference on Data Engineering (1988)

9. Binnig, C., Crotty, A., Galakatos, A., Kraska, T., Zamanian, E.:
The end of slow networks: it’s time for a redesign. Proc. VLDB
Endow. 9(7), 528–539 (2016)

10. Carey, M.J.: An abstract model of database concurrency control
algorithms. In: SIGMOD Conference, pp. 97–107. ACM Press
(1983)

11. Carey, M.J., Livny, M.: Distributed concurrency control perfor-
mance: a study of algorithms, distribution, and replication. In: 14th
International Conference on Very Large Data Bases (1988)

12. Carey,M.J., Livny,M.: Parallelism and concurrency control perfor-
mance in distributed databasemachines. In: SIGMODConference,
pp. 122–133. ACM Press (1989)

13. Carey, M.J., Muhanna, W.A.: The performance of multiversion
concurrency control algorithms. ACM Trans. Comput. Syst. 4(4),
338–378 (1986)

14. Chen, Y., Wei, X., Shi, J., Chen, R., Chen, H.: Fast and general
distributed transactions using RDMA and HTM. In: EuroSys, pp.
26:1–26:17. ACM (2016)

15. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,
R.: Benchmarking cloud serving systems with YCSB. In: SoCC,
pp. 143–154. ACM (2010)

16. Curino, C., Zhang, Y., Jones, E.P.C., Madden, S.: Schism: a
workload-driven approach to database replication and partitioning.
Proc. VLDB Endow. 3(1), 48–57 (2010)

17. Das, S., Nishimura, S., Agrawal, D., Abbadi, A.E.: Albatross:
lightweight elasticity in shared storage databases for the cloud
using live data migration. Proc. VLDB Endow. 4(8), 494–505
(2011)

18. Dashti, M., John, S.B., Shaikhha, A., Koch, C.: Transaction repair
for multi-version concurrency control. In: SIGMOD Conference,
pp. 235–250. ACM (2017)

19. Dragojevic, A., Narayanan, D., Castro, M., Hodson, O.: Farm: fast
remote memory. In: NSDI, pp. 401–414. USENIX Association
(2014)

20. Dragojevic, A., Narayanan, D., Nightingale, E.B., Renzelmann,
M., Shamis, A., Badam, A., Castro, M.: No compromises: dis-
tributed transactions with consistency, availability, and perfor-
mance. In: SOSP, pp. 54–70. ACM (2015)

21. Elmore, A.J., Arora, V., Taft, R., Pavlo, A., Agrawal, D., Abbadi,
A.E.: Squall: Fine-grained live reconfiguration for partitionedmain
memory databases. In: SIGMOD Conference, pp. 299–313. ACM
(2015)

22. Elmore, A.J., Das, S., Agrawal, D., Abbadi, A.E.: Zephyr: live
migration in shared nothing databases for elastic cloud platforms.
In: SIGMOD Conference, pp. 301–312. ACM (2011)

23. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Towards an
elastic and autonomic multitenant database. In: Proc. of NetDB
Workshop. sn (2011)

24. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow. 8(11), 1190–1201
(2015)

25. Faleiro, J.M., Abadi, D.J., Hellerstein, J.M.: High performance
transactions via early write visibility. Proc. VLDB Endow. 10(5),
613–624 (2017). https://doi.org/10.14778/3055540.3055553

26. Faleiro, J.M., Thomson, A., Abadi, D.J.: Lazy evaluation of trans-
actions in database systems. In: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’14, p. 15-26. Association for Computing Machinery, New
York (2014). https://doi.org/10.1145/2588555.2610529

27. Gray, J., Lorie, R.A., Putzolu, G.R., Traiger, I.L.: Granularity of
locks and degrees of consistency in a shared data base. In: Readings
in database systems (3rd ed.) (1976)

28. Härder, T.: Observations on optimistic concurrency control
schemes. Inf. Syst. 9(2), 111–120 (1984)

29. Harding, R., Aken, D.V., Pavlo, A., Stonebraker, M.: An evaluation
of distributed concurrency control. PVLDB 10(5), 553–564 (2017)

30. Higuchi, K., Tsuji, T.: A linear hashing enabling efficient retrieval
for range queries. In: 2009 IEEE International Conference on Sys-
tems,Man andCybernetics, pp. 4557–4562 (2009). https://doi.org/
10.1109/ICSMC.2009.5346783

31. Huang, J., Stankovic, J.A., Ramamritham, K., Towsley, D.F.:
Experimental evaluation of real-time optimistic concurrency con-
trol schemes. In: VLDB, pp. 35–46. Morgan Kaufmann (1991)

32. Huang, Y., Qian, W., Kohler, E., Liskov, B., Shrira, L.: Opportu-
nities for optimism in contended main-memory multicore transac-
tions. Proc. VLDB Endow. 13(5), 629–642 (2020)

33. Jipping, M.J., Ford, R.: Predicting performance of concurrency
control designs. In: SIGMETRICS, pp. 132–142. ACM (1987)

34. Jones, E.P.C.: Fault-tolerant distributed transactions for partitioned
OLTP databases. Ph.D. thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA (2012)

35. Lim, H., Kaminsky, M., Andersen, D.G.: Cicada: dependably fast
multi-core in-memory transactions. In: SIGMOD Conference, pp.
21–35. ACM (2017)

36. Lin, Y.S., Tsai, C., Lin, T.Y., Chang, Y.S., Wu, S.H.: Don’t look
back, look into the future: prescient data partitioning andmigration
for deterministic database systems. In: Proceedings of the 2021
International Conference on Management of Data, SIGMOD’21,
pp. 1156–1168. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3448016.3452827

37. Lu, Y., Yu, X., Cao, L., Madden, S.: Aria: A fast and practical
deterministic oltp database. Proc. VLDB Endow. 13(12), 2047-
2060 (2020). https://doi.org/10.14778/3407790.3407808

38. Mitchell, C., Geng,Y., Li, J.: Using one-sidedRDMAreads to build
a fast, cpu-efficient key-value store. In: USENIXAnnual Technical
Conference, pp. 103–114. USENIX Association (2013)

39. Pavlo, A., Curino, C., Zdonik, S.B.: Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems.
In: SIGMOD Conference, pp. 61–72. ACM (2012)

40. Peng, D., Dabek, F.: Large-scale incremental processing using dis-
tributed transactions and notifications. In: OSDI, pp. 251–264.
USENIX Association (2010)

41. Qadah, T., Gupta, S., Sadoghi, M.: Q-store: Distributed, multi-
partition transactions via queue-oriented execution and communi-
cation. In: EDBT, pp. 73–84. OpenProceedings.org (2020)

42. Qadah, T.M., Sadoghi, M.: Quecc: a queue-oriented, control-free
concurrency architecture. In: Middleware, pp. 13–25. ACM (2018)

43. Qin, D., Brown, A.D., Goel, A.: Caracal: contention management
with deterministic concurrency control. In: Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP’21, pp. 180–194. Association for Computing Machinery,
New York (2021). https://doi.org/10.1145/3477132.3483591

44. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable
workload-aware data placement for transactional workloads. In:
EDBT, pp. 430–441. ACM (2013)

45. Rosenkrantz, D.J., Stearns, R.E., II, P.M.L.: System level con-
currency control for distributed database systems. ACM Trans.
Database Syst. 3(2), 178–198 (1978)

46. Schiller, O., Cipriani, N., Mitschang, B.: Prorea: live database
migration for multi-tenant RDBMS with snapshot isolation. In:
EDBT, pp. 53–64. ACM (2013)

47. Serafini, M., Taft, R., Elmore, A.J., Pavlo, A., Aboulnaga, A.,
Stonebraker, M.: Clay: Fine-grained adaptive partitioning for gen-
eral database schemas. Proc.VLDBEndow. 10(4), 445-456 (2016).
https://doi.org/10.14778/3025111.3025125

123

https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.1109/ICSMC.2009.5346783
https://doi.org/10.1109/ICSMC.2009.5346783
https://doi.org/10.1145/3448016.3452827
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.1145/3477132.3483591
https://doi.org/10.14778/3025111.3025125

RCBench: an RDMA-enabled transaction framework for… 567

48. Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, C.,
Rollins, E., Oancea, M., Littlefield, K., Menestrina, D., Ellner, S.,
Cieslewicz, J., Rae, I., Stancescu, T., Apte, H.: F1: a distributed
SQL database that scales. Proc. VLDB Endow. 6(11), 1068–1079
(2013)

49. Stamos, J., Cristian, F.: A low-cost atomic commit protocol. In:
Proceedings 9th Symposium on Reliable Distributed Systems, pp.
66–75 (1990). https://doi.org/10.1109/RELDIS.1990.93952

50. Taft, R.,Mansour, E., Serafini,M.,Duggan, J., Elmore,A.J.,Aboul-
naga, A., Pavlo, A., Stonebraker, M.: E-store: Fine-grained elastic
partitioning for distributed transaction processing systems. Proc.
VLDB Endow. 8(3), 245-256 (2014). https://doi.org/10.14778/
2735508.2735514

51. Tanabe, T., Hoshino, T., Kawashima, H., Tatebe, O.: An analysis
of concurrency control protocols for in-memory databases with
ccbench. Proc. VLDB Endow. 13, 3531–3544 (2020)

52. Thomasian, A.: Concurrency control: methods, performance, and
analysis. ACM Comput. Surv. 30(1), 70–119 (1998)

53. Thomson, A., Diamond, T., Weng, S., Ren, K., Shao, P., Abadi,
D.J.: Calvin: fast distributed transactions for partitioned database
systems. In: SIGMOD Conference, pp. 1–12. ACM (2012)

54. Thuraisingham,B.,Ko,H.: Concurrency control in trusted database
management systems: a survey. SIGMODRec.22(4), 52–59 (1993)

55. TPC-C: http://www.tpc.org/tpcc/ (1988)
56. Tran, K.Q., Naughton, J.F., Sundarmurthy, B., Tsirogiannis, D.:

Jecb: a join-extension, code-based approach to oltp data partition-
ing. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD’14, pp. 39–50.
Association for Computing Machinery, New York (2014). https://
doi.org/10.1145/2588555.2610532

57. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy
transactions in multicore in-memory databases. In: SOSP, pp. 18–
32. ACM (2013)

58. Wang, C., Qian, X.: Rdma-enabled concurrency control protocols
for transactions in the cloud era. IEEE Trans. Cloud Comput. PP,
1–1 (2021)

59. Wang, T., Kimura, H.: Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. Proc.
VLDB Endow. 10(2), 49–60 (2016)

60. Wei, X., Dong, Z., Chen, R., Chen, H.: Deconstructing rdma-
enabled distributed transactions: hybrid is better! In: OSDI, pp.
233–251. USENIX Association (2018)

61. Wei, X., Shi, J., Chen, Y., Chen, R., Chen, H.: Fast in-memory
transaction processing using RDMA and HTM. In: SOSP, pp. 87–
104. ACM (2015)

62. Wu,Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical evalua-
tion of in-memorymulti-version concurrency control. Proc. VLDB
Endow. 10(7), 781–792 (2017)

63. Yao, C., Agrawal, D., Chen, G., Lin, Q., Ooi, B.C., Wong,
W., Zhang, M.: Exploiting single-threaded model in multi-core
in-memory systems. IEEE Trans. Knowl. Data Eng. 28(10), 2635–
2650 (2016)

64. Yoon, D.Y., Chowdhury, M., Mozafari, B.: Distributed lock man-
agement with RDMA: decentralization without starvation. In:
SIGMOD Conference, pp. 1571–1586. ACM (2018)

65. Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stonebraker, M.: Star-
ing into the abyss: an evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow. 8(3) (2014)

66. Zamanian, E., Binnig, C., Harris, T., Kraska, T.: The end of a myth:
Distributed transactions can scale. Proc. VLDBEndow. 10(6), 685-
696 (2017). https://doi.org/10.14778/3055330.3055335

67. Zamanian, E., Binnig, C., Salama, A.: Locality-aware partitioning
in parallel database systems. In: SIGMOD Conference, pp. 17–30.
ACM (2015)

68. Zhao, Z.: Efficiently supporting adaptive multi-level serializability
models in distributed database systems. In: SIGMOD Conference,
pp. 2908–2910. ACM (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1109/RELDIS.1990.93952
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.14778/2735508.2735514
http://www.tpc.org/tpcc/
https://doi.org/10.1145/2588555.2610532
https://doi.org/10.1145/2588555.2610532
https://doi.org/10.14778/3055330.3055335

	RCBench: an RDMA-enabled transaction framework for analyzing concurrency control algorithms
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distributed transaction processing
	2.2 RDMA

	3 Overview of RCBench
	3.1 MemStore
	3.2 Txn executor

	4 The access method
	4.1 The access to remote data items
	4.2 The manipulation of remote data items
	4.3 The access to global metadata

	5 Concurrency control primitives
	5.1 Operation abstraction in centralized systems
	5.2 Primitive abstraction in RDMA-capable networks
	5.3 Operation extension in RDMA-capable networks

	6 Design principles and Re-implementations of concurrency control algorithms
	6.1 Optimization principles
	6.2 Re-implementations
	6.2.1 No-wait
	6.2.2 Silo
	6.2.3 T/O
	6.2.4 Deterministic algorithms

	6.3 Optimizations

	7 Experiment
	7.1 Setup
	7.2 Effective CPU utilization rate
	7.3 Comparison between RDMA verbs
	7.4 Effect of RDMA networks
	7.5 Comparison with hybrid variants
	7.6 Effect of various optimizations
	7.6.1 General optimizations
	7.6.2 Variants of 2PL
	7.6.3 Variants of T/O

	7.7 Effect of contention levels
	7.8 Effect of write ratios
	7.9 Scalability
	7.9.1 Transaction scalability
	7.9.2 System scalability

	7.10 Comparison with other RDMA-based algorithms
	7.11 Summary

	8 Related work
	9 Conclusions
	Acknowledgements
	References

