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Abstract—In decentralized database systems, it is reported that
serializability could still produce unexpected transaction order-
ings, leading to the stale read anomaly. To eliminate this anomaly,
strict serializability imposes an additional ordering constraint,
called the real-time order, which is required to be preserved among
serializable transactions. Yet, preserving the real-time order in
strict serializability often causes the performance to drop sig-
nificantly. Because a weaker data consistency often yields better
performance, in this paper, we model serializability from different
consistency perspectives to properly leverage the performance and
consistency. To do this, we first define a group of orderings, based
on which we formulate multi-level serializability by preserving a
certain set of ordering constraints among transactions. We then
propose a bidirectional timestamp adjustment algorithm (abbrevi-
ated as BDTA) to support multi-level serializability with various op-
timizations. Our special design makes ordering constraints among
transactions be preserved simply by adjusting timestamp intervals.
Finally, we conduct extensive experiments to show the necessity
of introducing multi-level serializability and confirm that BDTA
achieves up to 1.19 × better performance than the state-of-the-art
concurrency control algorithms.

Index Terms—Database, transactions, serializability, concur-
rency control.

I. INTRODUCTION

D ECENTRALIZED database systems [37] like Google
Spanner [14], CockroachDB [44], and TiDB [25] have

become increasingly popular to support large-scale web appli-
cations. In these systems, each coordinator individually coor-
dinates transactions, each of which reads/writes data from a
snapshot using a given timestamp. Due to inconsistent local
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Fig. 1. The execution is serializable. However, due to two coordinators’
inconsistent local clocks, a stale read anomaly R2(x0) occurs in T2: reading
stale data x0, highlighted in red. Symbol Wi(xi) represents a write by Ti on
version xi of data item x, Ri(xj) signifies a read by Ti on version xj written
by transaction Tj , and Ci denotes the commit of Ti.

clocks across coordinators, recent studies [16], [40] show se-
rializability still produces unexpected transaction orderings that
make transactions read stale data.

Example 1: Consider a user who deposits money via ATM
by submitting transaction T1. To confirm the deposit, the user
subsequently checks the account balancex via an online banking
service by T2. Because T2 starts after T1 is accomplished, the
user expects to observe the balance x written by T1. However,
as shown in Fig. 1, T1’s write cannot be “seen” by T2, leading
to a stale read R2(x0) of T2. The reason is that different coordi-
nators execute T1 and T2 with inconsistent local clocks, i.e., the
snapshot (2:01 PM) of T2 is earlier than the commit timestamp
(2:02 PM) of T1. �

The real-time order is first introduced in the linearizability
consistency level [7], meaning that if one operation op1 starts
after another operation op2 is accomplished, then op1’s read
must observe op2’ write. Strict serializability [10], [24], [40]
imposes the real-time order on serializability by extending
the operation granularity to transaction granularity. Hence, it
eliminates the stale read anomaly in serializable transactions,
making T2 observe T1’ write, i.e., read x1, in Example 1. Thus
far, preserving the real-time order can only be implemented by
either (1) timestamp oracle [38] or (2) TrueTime [14]. When
using timestamp oracle, each transaction is assigned with glob-
ally ordered timestamps, and hence every two transactions are
comparable. For this method, however, obtaining the timestamps
suffers from high network latency overhead and could become
a bottleneck [8], [50]. TrueTime requires customized hardware
like atomic clocks to avoid using the timestamp oracle but incurs
expensive blocking overhead (i.e., commit-wait) to preserve
the real-time order. For example, in the commit-wait scheme,
transactions would wait for 4 ms to commit, leading to significant
performance degradation.
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Often, weaker consistency yields better performance. Al-
though strict serializability is taken as the strongest consistency
level, it is not often supported in decentralized databases because
of its poor performance. In practice, for better performance,
a few newly-found consistency levels, with degrees weaker
than strict serializability but stronger than serializability, are
proposed. For example, strong session serializability [16] inte-
grates session consistency with serializability, while Lynx [56]
imposes read-your-writes consistency on serializability. How-
ever, these consistency levels are reported on a case-by-case
basis, and hence, they cannot make the trade-off between con-
sistency and performance to meet users’ requirements. In this
paper, we study the consistency over serializability and above,
and achieve this trade-off by providing a systematic definition
of consistency levels over serializability. We exclude weaker
consistency levels, like snapshot isolation [33], [42], from our
scope, because users often assume serializability is implicitly
guaranteed [6], [20].

Inspired by different consistency models (popularized by
linearizability, sequential consistency [28], causal consis-
tency [27], etc.), we first define a group of orderings among
transactions, including the write-read order, program order,
causal-related order, real-time order, and write-legal order. We
then model multi-level serializability to systematically formu-
late consistency: (1) serializability, (2) sequential serializability,
and (3) strict serializability, by preserving these orders. For
instance, sequential serializability is formulated by preserving
the causal-related order and write-legal order. Besides providing
systematic modeling, our ordering-based formulation of multi-
level serializability is self-explanatory. Informally, given a trans-
action’s write, serializability does not ensure it is always “seen”
by late transactions; sequential serializability guarantees that
it is always “seen” by some late transactions (e.g., subsequent
transactions in the same session, ensured by the causal-related
order), and strict serializability guarantees that it is always
“seen” by all late transactions (ensured by the real-time order).

We then propose a novel concurrency control algorithm called
bidirectional timestamp adjustment (abbreviated as BDTA).
Inspired by dynamic timestamp adjustment (DTA) [31], [54],
[55], BDTA introduces a timestamp interval [LB,UB] for each
transactionT . For every two transactionsTi, Tj with an ordering
constraint (e.g., Ti → Tj), we guarantee that their timestamp
intervals are disjoint, i.e., Ti.UB < Tj .LB. Any transaction
violating the required ordering constraint cannot produce a
legal timestamp interval and aborts. We regulate the timestamp
allocation scheme in BDTA to support multi-level serializabil-
ity. In particular, we use the timestamp oracle to preserve the
real-time order, and the hybrid logical clock [17] to preserve the
causal-related order. Compared with existing DTA schemes, the
differences of BDTA are two-fold: on one hand, BDTA adjusts
timestamp intervals by preserving ordering constraints required
in multi-level serializability; on the other hand, BDTA optimizes
the size of the timestamp interval for each adjustment, leading
to a lower transaction abort rate.

In summary, we make the following contributions:
� We systematically formulate multi-level serializability

from different consistency perspectives. We define a group

of orderings among transactions and use these orders to
achieve a unified formulation.

� We design a concurrency control algorithm, called BDTA,
to support multi-level serializability. We propose a heuristic
method to adaptively determine the size of the timestamp
interval for each adjustment, which helps reduce the abort
rate. Our special design makes read-only transactions al-
ways commit.

� We conduct extensive experiments to show the necessity
of multi-level serializability. Additionally, we integrate
BDTA and state-of-the-art concurrency control algorithms
into Deneva [22], and results show BDTA achieve up to
1.19 × performance gain. We also integrate BDTA into
Greenplum [21] and release our implementation publicly.

II. BACKGROUND

In this section, we briefly introduce the system architecture
of decentralized databases and discuss the state-of-the-art times-
tamp allocation schemes.

A. Decentralized Database Systems

Decentralized database systems are particularly designed to
support scalable transaction processing. Typically, the system
architecture of transaction processing can be decomposed into
two layers: the coordination layer and the storage layer. The
first layer contains multiple coordinators, in which each process
coordinates incoming transactions and returns results to users.
The second layer consists of participant servers, each responsible
for storing and manipulating data items. Data items are spread
across all participant servers and are partitioned by a specific
strategy like hash partitioning. Each transaction is coordinated
by a single process in the coordinator. The process decomposes
a transaction into one or multiple local transactions, which are
then distributed to the corresponding participant server(s) that
is/are responsible for managing the data items to be read/written.
These systems always maintain multiple versions of each data
item and adopt multi-version concurrency control (MVCC) to
enable a transaction to read appropriate versions based on its
snapshot.

Most decentralized database systems achieve high availability
and fault tolerance using data replication, implemented us-
ing consensus protocols like Paxos [29] or Raft [36]. In this
case, each partition has multiple replicas, which construct a
Paxos/Raft group with one replica chosen as the leader replica.
Because data synchronization among the replicas based on
Paxos/Raft is orthogonal to this paper, to simplify the discussion,
we assume coordinators always send local transactions to the
leader replica of the corresponding partition with the required
data items.

B. Timestamp Allocation Schemes

In MVCC-based decentralized databases, each transaction
should acquire a unique timestamp and use such a timestamp
to determine the corresponding consistent snapshot. Some sys-
tems [38] use the timestamp oracle to allocate globally ordered
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TABLE I
SYMBOLS AND THEIR MEANINGS

timestamps. Under such a scheme, each transaction would com-
municate with the centralized timestamp oracle through the
network, which is costly and potentially becomes a performance
bottleneck. Recently proposed systems [44] rely on the hybrid
logical clock (HLC) [17] scheme to achieve consistent snapshot
reads. Unlike centralized timestamp oracle, HLC allows each
process to allocate timestamps individually, i.e., acquire times-
tamps in a decentralized manner. Each timestamp allocated by
HLC consists of two parts: (1) physical clock pts [32], which
maintains the local timestamp of that process, and (2) Lamport
clock lts [27], which traces orders among operations through
different processes. These systems assign an HLC timestamp to
each transaction and update HLC upon an operation, i.e., each
operation in a transaction will trigger the update of HLC in that
process. Consequently, for the applications where each trans-
action has a large number of reads/writes, frequently updating
HLC may hurt the performance. To alleviate this problem, we
propose a strategy to update HLC once per transaction instead
of once per operation (with more details in Section IV-C).

III. MULTI-LEVEL SERIALIZABILITY MODELING

In this section, we define ordering among transactions, and
systematically formulate multi-level serializability from differ-
ent consistency perspectives. Table I summarizes the notations
used throughout the paper.

Each transaction, denoted by T , is a sequence of operations,
that are either read Ri(xj), write Wi(xi), commit Ci or abort
Ai. Without loss of generality, we assume each transaction is
separately coordinated by a single process in the coordinator.
Each operation, denoted by op, consists of an invocation event
Inv(op, P ) and a response event Res(op, P ), where P rep-
resents a process in the coordinator. For simplicity, we omit
process P or data item xi when the context is clear, e.g.,
Inv(R2(x0), P2) can be simplified by Inv(R2(x0)).

Following widely adopted terminology defined in [1], [24], we
denote an execution of a set of transactions as a history. A history,

Fig. 2. A history H1 corresponds to Fig. 1.

Fig. 3. An equivalent history S1 to H1.

denoted by H , is a finite sequence of events in transactions. For
example, we present history H1 in Fig. 2 that corresponds to the
execution of transactions in Fig. 1. We project a history to the
data item level, transaction level, and process level:
� A data item projection, H|x, of a history H is the sub-

sequence of all invocation and response events in H of
operations executed on data item x.

� A transaction projection, H|T , of a history H is the sub-
sequence of all events in H whose operations are from T .

� A process projection, H|P , of a history H is the subse-
quence of all events in H coordinating by P .

Definition 1 (Equivalent Histories): Two histories H and H ′

are equivalent if ∀P , H|P = H ′|P . �
For example, historyS1 shown in Fig. 3 is equivalent toH1 by

swapping the order T1 and T2 located in P1 and P2 respectively,
from the global clock perspective. A transaction Ti is said to
be well-formed in H if its transaction projection H|Ti satisfies
the following conditions: (1) the first event is an invocation; (2)
each invocation, except the last, is immediately followed by the
response of the same operation; (3) each response, except the
last, is immediately followed by an invocation; (4) no events
follow the response of Ci or Ai. In this paper, we assume that
in a history, transactions are well-formed and finally commit.
Besides, we assume each process P coordinates transaction
sequentially, i.e., P only starts the first event of one transaction
after receiving the response of commit or abort of another
transaction.

A. Ordering Definitions

Given a history H , and two operations op1, op2 of H , we
define four partial orders between op1 and op2:

Definition 2 (Program Order, ≺pr
H ): op1 ≺pr

H op2 if they are
in the same P and Res(op1, P ) precedes Inv(op2, P ). �

Definition 3 (Write-Read Order, ≺wr
H ): op1 ≺wr

H op2 if op2
reads a version written by op1. �

Definition 4 (Causal-related Order, ≺cr
H ): op1 ≺cr

H op2 if (a)
op1 ≺pr

H op2 or (b) op1 ≺wr
H op2, or they are related by a tran-

sitive closure leveraging (a) and/or (b). �
Definition 5 (Real-time Order, ≺rt

H ): op1 ≺rt
H op2 if Res

(op1, Pi) precedes Inv(op2, Pj), where op1, op2 are from
Pi, Pj , respectively. �
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Partial orders given in Definitions 2, 3, 4, and 5 are defined
in operation granularity. They are widely used in the concurrent
system to model linearizability, sequential consistency, causal
consistency, etc. In our case, we make an extension from oper-
ation granularity to transaction granularity.

Given two transactions Ti and Tj in H , we define four partial
orders between Ti and Tj :
� Ti ≺pr

H Tj , if Ti and Tj are in the same process P and the
last event of Ti precedes the first event of Tj .

� Ti ≺wr
H Tj , if there exists an operation op1 in Ti and

another operation op2 in Tj such that op1 ≺wr
H op2.

� Ti ≺cr
H Tj , if (a) Ti ≺pr

H Tj or (b) Ti ≺wr
H Tj , or they are

related by a transitive closure leveraging (a) and/or (b).
� Ti ≺rt

H Tj , if Ti’s last event precedes the first event of Tj .
Definition 6 ((Transactionally) Sequential History): A his-

tory S is (transactionally) sequential if, for any two transactions
Ti and Tj in S, either the last event of S|Ti precedes the first
event of S|Tj or the last event of S|Tj precedes the first event
of S|Ti. We denote the order between Ti and Tj by Ti → Tj if
Ti precedes Tj in S. �

For brevity, we refer to transactionally sequential history as
sequential history unless otherwise specified.

Definition 7 (Write-legal Order): A sequential history pre-
serves the write-legal order if for ∀x, Inv(Rj(xi), Pk) in S|x
immediately comes after Res(Wi(xi), Pl) by removing events
of other read operations in S|x, i.e., roughly, reads of xi imme-
diately come after the write of xi in S|x. �

For example, S1 shown in Fig. 3 is a sequential history,
with T0 ≺pr

H T1, T0 ≺wr
H T2. Besides, S1 preserves the write-

legal order because Inv(R2(x0)) immediately comes after
Res(W0(x0)) in S1|x, indicating the order of S1 is T0 → T2 →
T1. However, H1 does not preserve the write-legal order since
Inv(R2(x0)) does not immediately come after Res(W0(x0))
in H1|x.

B. Multi-Level Serializability

By selectively imposing orders on sequential history, we
model multi-level serializability below. Given two histories
H and S, ≺cr

H⊆≺cr
S means that ∀Ti, Tj , if Ti ≺cr

H Tj , then
Ti ≺cr

S Tj (this is also applicable to other orders).
Definition 8 (Multi-level Serializability):
� Serializability: A history H ensures serializability if there

is a sequential history SH , which preserves the write-legal
order, with ∀T , SH |T = H|T and ≺wr

H ⊆≺wr
SH

.
� Sequential Serializability: H guarantees sequential seri-

alizability if H is equivalent to a sequential history SH ,
which preserves the write-legal order, with ≺cr

H⊆≺cr
SH

.
� Strict Serializability: H ensures strict serializability if H

is equivalent to a sequential history SH , which preserves
the write-legal order, with ≺cr

H⊆≺cr
SH

and ≺rt
H⊆≺rt

SH
. �

Informally, the execution of H is said to satisfy (1) serial-
izability when there exists a sequential history SH preserving
the write-read order and write-legal order, (2) sequential se-
rializability when an equivalent sequential history SH to H
preserves the causal-related order and write-legal order, (3)
strict serializability when an equivalent sequential history SH

Fig. 4. A history H2 and a sequential history S2.

to H preserves the real-time order, causal-related order, and
write-legal order. Take H1, shown in Fig. 2, for example. H1

satisfies sequential serializability because H1 is equivalent to
S1 shown in Fig. 3, which is a sequential history preserving the
write-legal order, with ≺cr

H1
⊆≺cr

S1
. Assume T2 reads x1 instead

of x0 in H1, i.e., R2(x1), H1 would satisfy strict serializability.
On the contrary, consider history H2 shown in Fig. 4(a). H2

does not preserve the write-legal order. We can find a sequential
history S2 (shown in Fig. 4(b)) to H2, which preserve the write
legal order, with ∀T ∈ H2, H2|T = S2|T and ≺wr

H2
⊆ ≺wr

S2
.

Thus,H2 is serializable but not sequentially serializable because
T3 ≺pr

H2
T4 is not preserved in S2.

In essence, we model multi-level serializability by combin-
ing serializability with the consistency model, including lin-
earizability and sequential consistency. In the following, we
theoretically show that the combination of serializability with
causal consistency and consistency below it can be reduced to
sequential serializability.

Theorem 1: Imposing causal consistency and consistency
below it on serializability can be reduced to sequential serializ-
ability.

Proof: As mentioned in [34], causal consistency and weaker
consistency levels, like read-your-write consistency, cannot pre-
serve a total order of operations, leading to different processes
observing conflict orders, e.g., Ti → Tj observed from the pro-
cess P1 and Tj → Ti observed from P2. Since serializability
imposes a total order of transactions, imposing causal consis-
tency or weaker consistency levels on serializability is reduced
to sequential serializability. �

IV. CONCURRENCY CONTROL ALGORITHM

In this section, we give an overview of BDTA to support multi-
level serializability and elaborate on how BDTA works correctly
in decentralized MVCC-based databases.

A. An Overview of BDTA

The basic idea of BDTA is to preserve required orders defined
in multi-level serializability during the transaction execution. To
start, we give an example to show how BDTA preserves required
orders under serializability.

Example 2: Consider history H3 shown on the top part of
Fig. 5. For reference, we list all orders required in serializability.
We present how to construct S3 during the execution, where S3
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Fig. 5. An example of dynamic ordering using BDTA.

is a sequential history that preserves the write-legal order of
H3, with ∀T , S3|T = H3|T and ≺wr

H3
⊆≺wr

S3
. From the global

clock perspective, T1 first commits, and we set T1 as the first
transaction in S3. T2 then commits. Theoretically, T2 can be
ordered before T1 or after T1 in S3. BDTA orders T2 before T1

by detecting the write-legal order T2 → T1. Next, T4 commits
and is ordered after T1 in S3 because of the write-read order
T1 → T4. Finally, T3 commits. Due to the write-legal orders
T3 → T1 and T2 → T3, T3 can only be ordered between T2 and
T1 in S3. In conclusion, S3 is shown at the bottom part of Fig. 5,
with the order as T2 → T3 → T1 → T4. �

Different from other concurrency control algorithms, like
T/O, or 2PL, that order transactions statically (e.g., T/O orders
transactions based on their start timestamps), BDTA orders
transactions dynamically, and hence possibly leads to a lower
transaction abort rate. As we can see from Example 2, by using
BDTA, T2 is ordered before T1 and can commit successfully,
while by using T/O, T2 is ordered after T1 and should abort.
BDTA relies on timestamp intervals to order transactions dy-
namically. Inspired by the DTA scheme [9], [30], we introduce
a timestamp interval [LB,UB] for each transaction T , For
every two transactions Ti, Tj , during the entire execution, we
guarantee that:

Ti.UB < Tj .LB if Ti → Tj (1)

(1) ensures that, for any two transactions Ti and Tj , if there
exists a partial order Ti → Tj , we have Ti.UB < Tj .LB, i.e.,
ordering Ti before Tj in the sequential history. Any transaction
violating the required ordering constraint cannot produce a legal
timestamp interval and aborts. We then give an example to show
how BDTA preserves required orders by adjusting the timestamp
intervals of transactions.

Example 3: Reconsider H3 in Example 2. We present how
the timestamp intervals are adjusted in Fig. 6. From the global
clock perspective, T1 first starts, followed by T2, T3, and T4.
First, when T3 starts, the timestamp intervals of T1, T2, and

Fig. 6. An example of bidirectional timestamp adjustment.

T3 are shown in the first column. Next, when T1 commits, we
can detect the write-legal orders (T2 → T1 and T3 → T1) and
bidirectionally adjust the timestamp intervals of T2 and T3 with
T1, making T2.UB < T1.LB and T3.UB < T1.LB (second
column). Then, when T2 commits, because we cannot detect
the write-legal order T2 → T3 and the program order T2 → T4,
we do not perform the adjustment of T2 with other transactions
but simply set T2.UB to T2.LB (third column). Afterward,
when T4 starts, by detecting program order T2 → T4, we adjust
T4.LB to guarantee T4.LB > T2.UB (fourth column). When
T4 commits, we adjust T4.LB to guarantee T4.LB > T1.UB
because of the write-read order T1 → T4 (fifth column). Finally,
when T3 commits, we detect write-legal order T2 → T3 and
adjust T3.LB to guarantee T3.LB > T2.UB (sixth column). �

As illustrated in Example 3, we preserve the partial orders
required in sequential history S3 by adjusting timestamp inter-
vals of transactions. We must emphasize that BDTA is different
from existing DTA algorithms, like Sundial [55], MaaT [31],
TCM [30]. First and foremost, BDTA adjusts timestamp in-
tervals to preserve required orders in multi-level serializability.
Second, BDTA optimizes the size of the timestamp interval for
each adjustment, leading to a lower transaction abort rate. Take
history H3 as an example. As discussed, the order T2 → T3 →
T1 needs to be preserved. However, existing DTA algorithms
cannot preserve such an order, causing T2 or T3 to abort.
Specifically, Sundial and MaaT do not have the capability to
adjust timestamp intervals bidirectionally, meaning that if there
exists an order Ti → Tj , when Ti or Tj commits, the timestamp
interval of Ti or Tj is adjusted individually. For this reason,
when T1 commits, they set T1.UB = T1.LB without adjusting
T2.LB and T2.UB. In Fig. 6, T2 starts after T1, indicating
T2.UB ≥ T2.LB > T1.LB. When T2 attempts to commit, due
to the write-legal order T2 → T1, there does not exist a legal
timestamp interval ofT2 to guaranteeT2.UB < T1.LB, causing
T2 to abort. For TCM, although it performs the bidirectional ad-
justment, its adjustment cannot leave enough legal interval space
for transactions to commit. For example, to preserve T2 → T1,
TCM sets T1.LB = T2.LB + 1 and T2.UB = T2.LB to make
T2.UB < T1.LB. However, by doing this, there does not exist
any interval space between T2.UB and T1.LB, and any transac-
tion ordered between T2 and T1, like T3 will abort. BDTA solves
the interval space problem of TCM by introducing an adaptive
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timestamp interval selection method, which is discussed in
Section V-A.

According to Definition 8, if a transaction violates the order-
ing constraints, the corresponding history must contain a cycle of
partial orders. BDTA ensures such a transaction cannot produce
a legal timestamp interval:

Theorem 2: Given a set of transactions in the history that form
a cycle of partial orders, there must exist at least one transaction
T with T.LB > T.UB. �

Proof: If a history H contains a cycle of partial orders,
there must exist the order Ti → Tj → . . .→ Ti. Suppose each
transaction T in the history H satisfies T.LB ≤ T.UB, Ac-
cording to (1), we ensureTi.UB < Tj .LB ≤ Tj .UB < Ti.LB,
which indicates Ti.UB < Ti.LB. Therefore, Ti cannot obtain
a legal timestamp interval, and the history H containing a
cycle of partial orders must include a transaction like Ti with
Ti.LB > Ti.UB. �

Theorem 2 guarantees that, during the entire execution, if a
given set of transactions forms a cycle of partial orders, we can
abort the transactions with illegal timestamp intervals to destroy
the cycle and ensure correctness.

B. BDTA in Action

We elaborate on how BDTA works in decentralized MVCC-
based databases, especially when and how timestamp intervals
of transactions are initialized and adjusted. BDTA follows the
optimistic way to do concurrency control. For this purpose,
the process Pk coordinates the entire lifecycle of a transaction
Ti from the initialization, through the local execution, to the
validation and commit.
� Initialization: The process Pk creates an execution context

for Ti, including transaction snapshot Ti.ss, timestamp
interval [LB,UB], and commit timestamp Ti.c, etc. Be-
cause we target MVCC-based databases, we process read
requests based on snapshot isolation, i.e.,Ti does reads and
writes based on the snapshot Ti.ss. For this reason, Ti.ss
is initialized below:

Ti.ss =

⎧⎨
⎩

GET_LC() serializability,
GET_HLC() sequential serializability,
TS_ORACLE() strict serializability

(2)
Function GET_LC() returns the local timestamp of the pro-
cessPk and is used for serializability. Function GET_HLC(),
shown in Algorithm 1, returns an HLC timestamp, which
is used for sequential serializability. Note that HLC times-
tamps of two transactions with the causal-related order
are pairwise comparable. Function TIME_ORACLE() returns
the current global timestamp allocated from a centralized
timestamp oracle [38] and is used for strict serializability.
[LB,UB] of Ti is initialized:

Ti.LB = Ti.ss, Ti.UB = +∞ (3)

[LB,UB] of Ti will be dynamically adjusted during the
local execution and validation. Given a distributed trans-
action Ti, we denote the set of participant servers that
are involved in the execution of Ti as S(Ti), and denote

the local transaction executed in the participant server
s ∈ S(Ti) as T s

i . We do the initialization for T s
i below.

T s
i .ss = Ti.ss, T

s
i .LB = Ti.LB, T s

i .UB = Ti.UB (4)

� Local execution: Local transaction T s
i of Ti is executed in

participant server s respectively. We now present how to
adjust [LB,UB] of T s

i to preserve the write-legal order
during the local execution. Upon a read Ri(xm) by T s

i ,
if BDTA detects that a new version xm+1 is generated
by another committed transaction Tm+1, the timestamp
interval of T s

i is adjusted below:

T s
i .UB = xm+1.cts− 1 (5)

where xm+1.cts is the commit timestamp of Tm+1, de-
noted as Tm+1.c (version xm+1 is written by Tm+1

that takes the same subscripts). Note that if the write
Wm+1(xm+1) happens afterRi(xm) from the global clock
perspective, the write-legal order is guaranteed during the
local validation of T s

m+1. Besides, we preserve the write-
read order based on snapshot isolation. Because for each
data item xm, only T s

i with T s
i .ss ≥ xm.cts can “see” xm,

which guarantees the write-read order Tm → Ti. We will
elaborate on the local execution in Section IV-D.

� Validation: After completing local execution, the process
Pk coordinates all local transactions T s

i following two-
phase commit (2 PC). To begin with, in the first phase of
2 PC, called the prepare phase, each local transaction does
the local validation and determines a proper [LB,UB] of
T s
i . To preserve the write-legal order, we examine the write

set T s
i .ws of T s

i and adjust T s
i .LB:

T s
i .LB = max{T s

i .LB,

max {x.RTS + 1|x ∈ T s
i .ws}} (6)

where x.RTS is the maximum commit timestamp of all
committed transactions that ever read data item x. We then
adjust the timestamp intervals ofT s

i andT s
j bidirectionally,

i.e., we identify every concurrent transaction T s
j that reads

data item x ∈ T s
i .ws, and adjust T s

i .LB:

T s
i .LB = max{T s

i .LB,

max {T s
j .LB + μj,i|T s

i .ws ∩ T s
j .rs �= ∅}}

(7)

whereμj,i represents the interval space for the bidirectional
adjustment. Finally, we adjust T s

j .UB of every T s
j :

T s
j .UB = min {T s

j .UB, T s
i .LB − 1} (8)

Reconsider Example 3. As shown in Fig. 7, during the
validation of T s

1 , by examining the write set of T s
1 , BDTA

identifies transactions T s
2 and T s

3 that read the data item
x, and hence bidirectionally adjusts T s

1 .LB and T s
2 .UB

(T s
1 .LB and T s

3 .UB) to preserve the write-legal order
T2 → T1 (T3 → T1). To achieve this, we first set T s

1 .LB
to max{T s

2 .LB + μ2,1, T
s
3 .LB + μ3,1} based on (7) and

then set T s
2 .UB and T s

3 .UB to T s
1 .LB − 1 based on (8).
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Fig. 7. Timestamp interval adjustment for Example 3.

� Commit: After all local transactions finish the validation
phase, Ti comes to the second phase of 2 PC named
as commit phase. In the commit phase, the process Pk

collects [LB,UB] of T s
i from each participant server

s ∈ S(Ti) and updates [LB,UB] of Ti based on (9). If
Ti.LB > Ti.UB, Pk notifies each participant to abort the
local transaction; otherwise, Pk notifies each participant
server to commit the local transaction.

Ti.LB = max{T s
i .LB|s ∈ S(Ti)}

Ti.UB = min{T s
i .UB|s ∈ S(Ti)} (9)

Finally, the commit timestamp of Ti is set below.

Ti.c = Ti.LB (10)

Using (10), we guarantee the order of transactions’ commit
timestamps follows that determined by BDTA. We will
elaborate on the validation and commit in Section IV-E.

C. Multi-Level Serializability Guarantee

BDTA preserves orders among serializable transactions by
maintaining disjoint timestamp intervals.

Theorem 3: Given a history H , BDTA guarantees the execu-
tion of H satisfies serializability. �

Proof: Given any transaction Ti in H , for local transaction
T s
i in each participant server s ∈ S(Ti), BDTA guarantees there

exists a sequential history H preserving the write-legal order
((5)–(8)), with H|T s

i = H|T s
i . Besides, due to snapshot isola-

tion, we ensure the write-read order in H . Thus, according to
Definition 8, BDTA achieves serializability in each participant
server. Further, by imposing 2 PC on ∀s ∈ S(Ti) to make an
agreement on [LB,UB] of Ti (9), plus (10), we guarantee that
H satisfies serializability. �

Theorem 3 guarantees a serializable execution using BDTA.
We now discuss how BDTA guarantees strict serializability and
sequential serializability, respectively.
• Strict serializability guarantee: We additionally preserve

the real-time order based on TIME_ORACLE(). In fact, when Ti

commits, if Ti.LB ≤ TIME_ORACLE(), the real-time order is
preserved by (10), ensuringTi.c ≤TIME_ORACLE(). By so doing,
a new transactionTj starting afterTi’s commit will haveTj .ss ≥
TIME_ORACLE(), and hence, Tj can always “see” Ti’s writes.
Otherwise, ifTi.LB >TIME_ORACLE(), to preserve the real-time
order, Ti waits until Ti.LB ≤TIME_ORACLE() to commit. Thus,
under strict serializability, we introduce an additional constraint
for Ti to commit, as shown below.

Ti.LB ≤ TIME_ORACLE() (11)

Fig. 8. An example of allocating HLC timestamps.

Algorithm 1: GET_HLC() [17].
1: if ptsk ≥ current process timestamp then ltsk++;
2: elseptsk ← current process timestamp, ltsk ← 0;
3: return 〈ptsk, ltsk〉;

Algorithm 2: UPDATE_HLC(pts, lts) [17].
1: temp← ptsk;
2: ptsk ← max{ptsk, pts, current process timestamp};
3: if ptsk = temp and ptsk = pts then
ltsk ← max{ltsk, lts}+ 1;
4: else if ptsk = temp then ltsk ++;
5: else if ptsk = pts then ltsk ← lts++;
6: else ltsk ← 0;

• Sequential serializability guarantee: We preserve the causal-
related order based on HLC [17]. We implement HLC by al-
lowing each process to allocate timestamps individually. We
must emphasize that for each transaction, BDTA updates HLC
only once. Algorithm 1 describes the HLC timestamp allocation,
while Algorithm 2 presents the HLC update upon Ti commit
using Ti.c.pts and Ti.c.lts. Note that ptsk and ltsk denote the
physical clock pts and Lamport clock lts of the process Pk,
respectively. Reconsider Example 3. As shown in Fig. 8, upon
the commit of T1, T1.c is set to 〈2:02, μ2.1〉, larger than T2.LB,
〈2:02, 0〉. The processP2 updates its HLC timestamp usingT1.c.
T2 then commits with T2.LB. All subsequent transactions in
the processP2, e.g., T4, take larger HLC timestamps than T2.c.
Our transaction-level HLC scheme preserves the causal-related
order. For example, since T4.ss is larger than T2.c and T1.c, all
writes seen by T2 and T1 can also be seen by T4, preserving the
causal-related orders T2 → T4 and T1 → T4.
• Summarization: To summarize BDTA, the adjustment is

triggered by a transaction Ti upon either (1) CONDITION 1: Ti

reads a version xm, and a new version xm+1 is generated by
a committed Tm+1 before Ti’s read, or (2) CONDITION 2: Ti

enters the validation phase. CONDITION 1, 2 are used to preserve
the write-legal order, and CONDITION 1 plus snapshot isolation
preserves the write-read order.

D. Local Execution

We present how local execution in BDTA works. In our de-
sign, a data itemx is associated with metadata that has four fields
(shown in Fig. 9): (1) x.pk is the primary key of x; (2) x.RTS is
the maximum commit timestamp of all committed transactions
that ever read x; (3) x.WT is the transaction that is currently
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Fig. 9. Status of data items using BDTA.

Algorithm 3: Execution of Local Transaction T s
i .

modifying x. It is set during the validation, and acts like a
“soft-lock” to prevent write-write conflicts, i.e., two transactions
are disallowed to modify x simultaneously; (4) x.RIDs is a
lock-free list, recording every non-committed transaction that
reads x. Like many optimistic algorithms, we maintain the read
set T s

i .rs and write set T s
i .ws of T s

i . To enable exclusive access
to [LB,UB] of T s

i , we provide a spinlock T s
i .sl, and any access

to [LB,UB] of T s
i must hold the lock.

Algorithm 3 shows the pseudo-code of Read() and
Write() functions. Read() takes a local transaction T s

i and
a search key key as the input (line 1). We directly return xi if it is
already in T s

i .ws (line 2). Otherwise, we add key to T s
i .rs (line

3), findx, and updatex.RIDs by addingT s
i (lines 4–5). We next

invoke SnapshotRead() to read a proper version xm and its
next version xm+1 (if any) (line 6). In SnapshotRead(), if
we detect (1) some T s

j in the validation phase is writing x (i.e.,
x.WT = T s

j ), and (2) xm is the latest version while xj is not
visible yet (the order betweenT s

i andT s
j remains undetermined),

we do not read x until T s
j commits to guarantee correctness. If

xm+1 exists, we then adjust T s
i .UB based on (5) by holding

the lock T s
i .sl (lines 7–10). Finally, xm is returned (line 11).

Function Write() takes a local transaction T s
i , x’s primary

key x.pk, and a new version xi to be written as the input. If a
version x′i with the same x.pk is in T s

i .ws, x′i is updated by xi;
otherwise, a pair 〈x.pk, xi〉 is added into T s

i .ws.
Example 4: In reference to Figs. 5 and 6, let us reconsider

the history H3. T1 first starts and executes R1(x0), during
which we store x.pk into T1.rs, insert T s

1 into x.RIDs, and
read the proper version x0. T1 then executes W1(x1) to store

〈x.pk, x′1〉 into T1.ws. After that, T2 and T3 perform R2(x0),
R3(x0) and R2(y0) using the same logic as R1(x0), described
in Algorithm 3. Now we have x.RIDs = {T s

1 , T
s
2 , T

s
3 } and

y.RIDs = T s
2 , as shown in the left part of Fig. 9.

E. Validation and Commit

We introduce the validation of a local transaction T s
i in

Algorithm 4. ∀xi ∈ T s
i .ws, we set a soft-lock on x by T s

i using
compare-and-swap (lines 2–4). If a write-write conflict on x is
detected, we abort T s

i . Next, by invoking the function BiAd-
just(), we bidirectionally adjust the timestamp intervals of
T s
i with transactions in x.RIDs based on (6)–(8) (line 5). We

then adjust T s
i .LB to preserve the write-read order (line 7). We

abort T s
i if its timestamp interval is illegal (line 9); otherwise,

the validation of T s
i is passed (line 10).

We present the commit of a local transaction T s
i in Algo-

rithm 5. We encapsulate the local validation in the prepare
phase of 2 PC, and once the validation phase of Ti completes
successfully, the processPk coordinatesT s

i to commit by writing
data items to the database, updating x.RTS, and releasing the
“soft lock” (setting x.WT to 0, lines 2–5). Besides, for each
key ∈ T s

i .rs, we update x.RTS by the commit timestamp of
Ti using atomic read-modify-write (RMW), and remove T s

i

from the read list x.RIDs (lines 6–8). If Ti’s validation fails,
the process Pk coordinates T s

i to abort by resetting x.WT and
removing T s

i from x.RIDs.
Handling Contentions on list x.RIDs: We use a lock-free

list [23] to implement x.RIDs (line 12, Algorithm 4) for better
performance. It is unnecessary to acquire locks on x.RIDs,
and the reasons are two-fold. First, setting x.WT to T s

i during
the validation phase of the transaction Ti (line 3, Algorithm 4)
blocks other transactions to read the current version of x (line
6, Algorithm 3). Second, for transactions that read previous
versions of x but are not in x.RIDs, their timestamp intervals
are adjusted in line 9, Algorithm 3.

Example 5: Let us continue Example 4 to validate whether
T1 can commit. We set x.WT to T s

1 , adjust T s
1 .LB to ensure

T s
1 .LB > x.RTS, and bidirectionally adjust the timestamp in-

tervals of T s
1 and transactions in x.RIDs (T s

2 and T s
3 ). Be-

cause of the order T2 → T1 and T3 → T1, we adjust T s
1 .LB

to max(T s
2 .LB + μ2,1, T

s
3 .LB + μ3,1, T

s
1 .LB). We also set

T s
2 .UB and T s

3 .UB to T s
1 .LB − 1. We calculate T1.LB based

on T s
1 .LB as discussed in (9), and then commit T1 with T1.c =

T1.LB. Besides, we update x.RTS to T1.c, reset x.WT to 0,
remove T s

1 from x.RIDs, and write version x1 to the data item
x, according to Algorithm 5. The status of data items is shown
in the right part of Fig. 9. Next, T2 commits with T2.c = T2.LB,
removes T s

2 from x.RIDs and y.RIDs, and updates y.RTS to
T2.c. After that, T4 then reads x1 and commits, and hence, T4.c
is larger than T1.c. Finally, T3 executes R3(y0) and W3(y3),
and start to commit. During the validation, T3 acquires y.WT ,
adjusts T3.LB to y.RTS + 1 (T2.c+ 1), and examines whether
T3.UB > T3.LB. Because we introduce the adaptive timestamp
interval selection method, μ2,1 and μ3,1 are larger enough to
obtain a legal timestamp interval for T3, and therefore, T3 can
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Algorithm 4: Validation of Local Transaction T s
i .

Algorithm 5: Commit of Local Transaction T s
i .

commit successfully. We follow Algorithm 5 to commit T3 and
write version y3 into y.

F. Preventing Phantom Reads

We present how BDTA handles the phantom read, which
occurs when one transaction issues a predicate-based read twice
but obtains two different read sets. Given two concurrent trans-
actions T1, T2, T1’s snapshot T1.ss might be larger than T2’s
commit timestamp due to inconsistent local clocks. When T1

triggers a predicate-based read through the index, it may observe
T2’s write after T2 commits, leading to the phantom read. We
handle the phantom read by encapsulating BDTA into the index
scheme. Without loss of generality, we assume predicate-based
reads can be regarded as traversing the B+-tree index. We treat
each leaf node of the index as a data item, and we associate
each leaf node (denoted as ln) of the index with metadata
ln.RTS, ln.WT , and ln.RIDs similar to the data item (Fig. 9).
Because a predicate-based read needs to access leaf nodes of

Fig. 10. Status of a B+-tree in BDTA.

the index, and a write needs to update a leaf node, we then
preserve the write-read order and write-legal order over the
leaf nodes. Consider two concurrent transactions T1 and T2.
T1 has a predicate-based read to search keys in the range [a, d].
As shown in Fig. 10, T1 needs to access leaf nodes ln1 and
ln2, and T1 is added to ln1.RIDs and ln2.RIDs. Afterward,
suppose that T2 writes the index key b to the leaf node ln1 and
commits. BDTA preserves the write-legal order T1 → T2 by
ensuring T1.UB < T2.LB. Since T1.ss < T2.c is preserved, T1

cannot observe the index key b. In this way, the phantom read is
eliminated by BDTA.

V. OPTIMIZATIONS

In this section, we introduce a heuristic method to adaptively
determine the size of the timestamp interval for each adjustment
and explain how BDTA makes read-only transactions always
commit.

A. Adaptive Timestamp Interval Selection

As discussed in Section IV-A, selecting a good timestamp
interval size is essential to reduce the transaction abort rate.
Reconsider Example 3. If no interval space exists between
T2.LB and T1.LB, transactions ordered between T2 and T1

(e.g., T3) would abort. Given any two transactions Ti and Tj

with order constraint Ti → Tj , we use μi,j to denote the interval
space [Ti.LB, Tj .LB] between Ti and Tj , i.e., μi,j = Tj .LB −
Ti.LB. Theoretically, a proper μi,j should meet the following
two requirements. First, we require μi,j > Ni,j , where Ni,j

is the number of transactions ordered between Ti and Tj . By
so doing, transactions ordered between Ti and Tj are more
likely to find a legal timestamp interval and commit. Second,
we need μi,j ≤ Tk.UB − Ti.UB, where Tk is the transaction
with the smallest UB among transactions ordered after Tj .
This property ensures transactions ordered after Tj will not
be influenced by μi,j . Otherwise, if μi,j > Tk.UB − Ti.UB,
Tj .LB = Ti.UB + μi,j can be larger than Tk.UB, causing
transactions ordered after Tj (e.g., Tk) to abort.

Yet, computation of the best μi,j for any two transactions Ti

and Tj with constraint Ti → Tj is infeasible because we cannot
obtain the precise value of Ni,j and detect Tk in advance. For
this reason, we instead propose a heuristic method to adaptively
estimate μi,j based on the contention level of the data items Ti

and Tj accessed. For each data item x, we collect the number
of calls in bidirectional adjustment (x.cno) to represent the
contention level on x, denoted as L(x). Recall that during the
validation phase of Tj , for each x ∈ T s

j .ws, we use μi,j to
bidirectionally adjust the timestamp intervals of T s

j and any
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Algorithm 6: Adjust Timestamp Interval μk.

other T s
i in x.RIDs (line 18, Algorithm 4). Consequently, a

higher contention level L(x) indicates more transactions are
likely to be ordered between Ti and Tj , which requires μi,j

to be positively correlated with L(x), i.e., the higher L(x) is,
the larger μi,j should be assigned. We classify L(x) into three
contention levels: low, medium, and high contention, by simply
comparing x.cno with two pre-defined thresholds τ1 and τ2.
Besides, we assign μl, μm, and μh for each contention level to
represent the optimal timestamp interval space of that contention
level, as shown in (12).

μi,j =

⎧⎨
⎩
μl x.cno ≤ τ1 low contention,
μm τ1 < x.cno ≤ τ2 medium contention,
μh τ2 ≤ x.cno high contention

(12)

We adaptively refine these interval spaces during the execu-
tion based on Algorithm 6. Initially, μl, μm, μh are set to 1.
Then, we create an individual thread and periodically refine
them using Algorithm 6, which is constructed based on the
well-known simulated annealing (SA) algorithm. We take the
timestamp interval to be adjusted μk, μk ∈ {μl, μm, μh}, and
the temperature threshold Tmin as the input. We denote F(μk)
as the abort rate after applying μk. After initialization (line 2),
we iteratively select a random μ̂ (line 4) and examine whether
adopting μ̂ can reduce the abort rate. If the abort rate drops, we
updateμk = μ̂; otherwise, we accept μ̂with a certain probability
(lines 6–8). The probability follows the Boltzmann distribution
by examining e−Δt/cT and a random value seed ∈ (0, 1), where
c is Boltzmann constant (line 6). For each iteration, temperature
T is decreased to λ · T , where λ is a hyper-parameter and set to
0.6 by default (line 9). We terminate the iteration and output μk

if T is decreased to the temperature threshold Tmin (line 10).

B. Non-Validation for Read-Only Transactions

We observe in BDTA, the timestamp interval of every read-
only transactionTi is always legal, i.e.,Ti.LB ≤ Ti.UB is guar-
anteed. The reason is that according to (5)–(8), Ti.LB = Ti.ss
andTi.ss < Ti.UB are always true. Thus, we skip the validation
in this case and replace the costly 2 PC with one phase commit
for read-only transactions.

VI. IMPLEMENTATION

In this section, we present our prototype system by integrating
BDTA into Greenplum. Greenplum [21] is a distributed database

system technically built on top of PostgreSQL. It has a single
coordinator (master) and several participant servers (segments).
Each master/participant server runs a PostgreSQL instance.
To integrate BDTA into Greenplum, we make the following
extensions, and our implementation is publicly available via
https:// github.com/ dbiir/ BDTA.
� Storage Engine: We re-construct the storage layer from

the traditional heap store to the key-value store using
RocksDB. We then implement data partitioning based on
the hash strategy.

� Multi-coordinator architecture: We extend Greenplum to
support multi-coordinator architecture. In this extension,
each coordinator runs a PostgreSQL instance, in which
each process coordinates transactions individually.

� Timestamp Allocation: We implement timestamp oracle
and HLC as discussed to assign timestamps. To ensure high
available timestamp allocation, timestamp oracle is imple-
mented as a raft-based service. In our implementation,
timestamp oracle serves around ten million timestamps
per second. The performance may be influenced by high
network latency over a WAN network.

� Concurrency Control: We integrate BDTA into Greenplum
to support multi-level serializability. First, we replace the
globally shared snapshot to avoid costly deadlock detection
by our timestamp allocation schemes. We then encapsulate
the validation phase and commit phase into 2 PC. To ac-
commodate BDTA in Greenplum, we maintain read/write
sets of transactions in segments to reduce the communica-
tion overhead. Besides, for simplicity, we store data items
and their metadata for concurrency control separately. The
metadata is stored in memory and indexed with a red-black
tree. We further use a separate thread to execute Algo-
rithm 6 to periodically update the optimal interval space
for different contention levels.

VII. EVALUATION

Our experimental evaluation is conducted from two perspec-
tives. First, we integrate BDTA and the state-of-the-art concur-
rency control algorithms into a distributed transaction testbed,
called Deneva [22]. We compare them in the same context
and report our findings. Second, we conduct experiments on
Greenplum integrated with BDTA to verify the necessity of
introducing multi-level serializability.

A. Workloads and Experiment Setup

We use the following workloads to conduct the experiments:
YCSB [13] is a synthetic benchmark modeling large-scale

Internet applications. It uses a relation with 10 attributes, in
which one is taken as the primary key. Each record in this
relation occupies 1 KB. The dataset is horizontally partitioned,
and each partition is assigned to a participant server. Following
Deneva [22], we set each partition to have 16 million records,
indicating the data size of each participant server is 16 GB. By
aiming to simulate different contention levels, we follow Zipfian
distribution to control the access on the same records using a
skew factor, denoted as theta. When theta = 0, we access each
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Fig. 11. Effect of adaptive timestamp interval selection.

record in equal probability. Besides, we vary the write ratio to
control the ratio of reads and writes by taking operations from
transactions as a whole, i.e., write ratio = 50% means there are
totally 50% writes and 50% reads in transactions. By default,
we set write ratio = 50% and theta = 0.6.

TPC-C [46] is a popular OLTP benchmark simulating a ware-
house order processing application. It contains 9 relations. Each
warehouse contains 100 MB data size, and by default, we set
32 warehouses per participant server. TPC-C simulates 5 types
of transactions, in which NewOrder, Payment, and Delivery
are read-write transactions, and Stock-Level and Order-Status
are read-only transactions (a transaction with both reads and
writes is referred to as a read-write transaction). Following
Deneva [22], we do not include “think time” and user data errors
that cause 1% of NewOrder transactions to abort, aiming to test
the peak performance. Unless otherwise specified, we use the
default transaction mix of standard TPC-C in our experiments.

We conduct experiments except Section VII-E using an in-
house cluster with 28 virtual nodes, each of which has 4 cores/8
threads and 32 GB memory. Unless otherwise specified, we run
the protocols on 16 nodes, each containing 1 coordinator and 1
participant server. The RTT of the network is around 0.3 ms. For
each experiment, we first run 30 s for warm-up and then collect
results of the following 60 s. We evaluate the performance in
terms of: (1) throughput, which is the number of committed
transactions; and (2) abort rate, which is the percentage of
aborted transactions against all finished transactions.

B. Effect of Adaptive Timestamp Interval Selection

We first study the effectiveness of the adaptive timestamp
interval selection method by comparing BDTA and BDTA with-
out adaptive timestamp interval (denoted as BDTA-1) under
sequential serializability. We set μ adaptively in BDTA, and
fix μ = 1 in BDTA-1. We run them under the low contention
workload (theta = 0.25) and high contention workload (theta =
0.75), respectively. We vary the cluster from 8 to 28 nodes, and
plot the results in Fig. 11. Fig. 11(a) shows that under the low
contention workload, BDTA achieves comparable performance
with BDTA-1, showing the additional cost for running the auto-
tuning algorithm is negligible. We further study the benefit of
adaptive timestamp interval selection over the high contention
workload, and plot the results in Fig. 11(b). We can observe that
BDTA achieves higher throughput and better scalability than
BDTA-1 by up to 91.42%. The performance of BDTA gains
from the adaptive timestamp interval selection, which helps most

TABLE II
COMPARISON OF THE ABORT RATE BETWEEN BDTA AND BDTA-1

Fig. 12. Serializability with varying theta and write ratio.

transactions get a proper timestamp interval, thereby reducing
the abort rate. As shown in Table II, although more transactions
need to abort under the high contention workload, the abort rate
of BDTA is lower than that of BDTA-1 by a factor of 21.96%.

In the following experiments, we adopt the adaptive timestamp
interval selection in BDTA by default.

C. Comparisons With Dynamic Ordering Algorithms

We compare BDTA with three recently proposed concurrency
control algorithms using the DTA scheme, i.e., MaaT [31],
Sundial [55], and TCM [30]. Because MaaT and Sundial only
support serializability, we conduct our experiments under seri-
alizability for fair comparisons.

We make the comparison under different contentions by vary-
ing write ratio, and plot the results in Fig. 12(a). As we can see,
for the read-only transactions (0% of read-write transactions),
BDTA outperforms the others by a factor of 38.66%. This is
because, for read-only transactions, BDTA eliminates the expen-
sive 2 PC cost, and hence reduces the coordination overhead. Be-
sides, when the percentage of read-write transactions increases,
all algorithms suffer higher abort rates (shown in Fig. 12(b)),
causing the performance to drop. Due to the adaptive timestamp
interval selection, transactions are more likely to obtain proper
timestamp intervals and commit, and therefore, BDTA performs
the best with the lowest abort rate.

We evaluate the effect of theta, and plot the results in
Fig. 12(c). BDTA outperforms MaaT, Sundial, and TCM by
up to 22.32% due to three reasons: First, MaaT and Sundial are
single-version based, while BDTA is multi-version based, which
allows reads do not block by the writes to increase concurrency.
Second, MaaT and Sundial have to issue expensive 2 PC for read-
only transactions to commit while BDTA does not. Third, MaaT,
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Fig. 13. Scalability under serializability.

Sundial, and TCM use a fixed space for timestamp adjustment,
while BDTA leverages the adaptive timestamp interval selection,
which further reduces abort rates and improves performance.
The time breakdown in Fig. 12(d) with theta = 0.6 indicates
that the time spent on aborting transactions in MaaT, Sundial,
and TCM is much higher than that in BDTA.

We next investigate the scalability by varying the cluster from
8 to 28 nodes, and plot the results in Fig. 13.

1) Scalability over YCSB: We study the scalability over the
medium contention workload (theta = 0.6), and plot the results
in Fig. 13(a). We can observe that BDTA achieves up to 24.23%
performance gain and the best scalability when the number of
nodes varies.

2) Scalability over TPC-C: We further evaluate the per-
formance under the TPC-C workload, and report the results
in Fig. 13(b). In this experiment, we customize the TPC-C
workload with 50% NewOrder transactions and 50% Payment
transactions. BDTA still achieves up to 20.51% higher through-
put over the next-best algorithm. Again, the scalability benefit
of BDTA mainly comes from our special design that adjusts
timestamp bidirectionally, which reduces the overhead of co-
ordinators. As discussed in Section IV-E, each transaction in
BDTA locally adjusts timestamp intervals in involved participant
servers, and coordinators are just responsible for collecting all
local timestamp intervals.

D. Comparisons With Static Ordering Algorithms

We compare BDTA with three static ordering concurrency
control algorithms under sequential serializability: 2PL [4],
MVCC [5], and Silo [47]. For 2PL, we implement the No-
Wait variant to prevent deadlock. We implement MVCC by
ordering transactions based on their start timestamps. Silo is
an OCC-based algorithm and uses the serialization point to
order transactions, and we extend it into distributed setting
according to Google F1 [41]. We make local timestamps of each
process monotonically increase using HLC, which is capable of
preserving the program order.

We first study the effect of contentions by varying the skew
factor theta, and plot the results in Fig. 14. As we can see, BDTA
performs up to 56.58% better than the next-best algorithm. As
shown in Fig. 14(a), when theta< 0.6, Silo performs the worst
because Silo introduces additional overhead in the validation
phase, where a transaction reads data items in its read set again
to examine whether they remain unchanged. When theta reaches
0.6, the cost of aborting transactions increases and becomes the

Fig. 14. Sequential serializability with varying theta.

Fig. 15. Scalability under sequential serializability.

bottleneck for 2PL, MVCC, and Silo, which can be verified
in Fig. 14(b). Because BDTA orders transactions dynamically,
BDTA shows a better tolerance on contentions, leading to a
higher throughput.

We then perform the scalability evaluation under sequential
serializability. As observed in Fig. 15, BDTA achieves up to 1.19
× higher throughput than the second-best algorithm under the
medium contention workload (theta = 0.6) and high contention
workload (theta = 0.75). The performance of BDTA is mainly
due to the bidirectional timestamp adjustment mechanism, en-
suring the lowest abort rate, as verified in Fig. 15(c) and (d).

E. Comparisons of Multi-Level Serializability

In this section, we conduct experiments on an in-house cluster
with 3 high-performance nodes running CentOS 7.4. Each node
has two Intel(R) Xeon(R) Platinum 8276 CPUs (28 cores × 2
HT), 8 × 128 GB DRAM, and 3 TB NVMe SSDs. We deploy
Greenplum with 2 coordinators and 3 participant servers in this
cluster. Each node hosts at most 1 coordinator and 1 participant
server. By default, the Round-Trip Time (RTT), an indicator to
measure the network latency, in the cluster is 0.03 ms. To better
evaluate the performance of different serializability levels, we set
RTT=1.5 ms to simulate the deployment over a WAN network
(e.g., a cross datacenter cluster). Note that setting RTT=1.5 ms
to simulate a cross datacenter deployment is reasonable. For
example, the RTT from New York to Dallas is 40 ms [35]. Thus,
we use RTT= 0.03 ms, and RTT=1.5 ms to simulate the network
latency over a LAN network, and WAN network, respectively.
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Fig. 16. Effect of integrating BDTA into Greenplum.

Fig. 17. Multi-level serializability on Greenplum+BDTA.

We first study the effectiveness of integrating BDTA into
Greenplum (denoted as Greenplum+BDTA), and report the com-
parison between Greenplum+BDTA and Greenplum in Fig. 16.
Note that Greenplum+BDTA is set under the sequential serializ-
ability level. Since Greenplum only supports the read committed
and repeatable read isolation level, we set Greenplum under the
read committed level to obtain the peak performance. As we can
see, even if Greenplum is set under the read committed level,
Greenplum+BDTA still outperforms Greenplum by a factor of
up to 2.01 × and 1.95 × on YCSB and TPC-C workload,
respectively. The reason is two-fold. On the one hand, Green-
plum+BDTA can tolerate more transaction concurrency, which
leads to better performance. As mentioned, BDTA is employed
in Greenplum+BDTA which reduces the abort rate and improves
performance. On the other hand, Greenplum coordinates trans-
actions with a costly distributed deadlock detection component,
which is eliminated in Greenplum+BDTA.

We then report the experimental results of executing Green-
plum+BDTA under different serializability levels over LAN in
Fig. 17(a) and (b). We observe that the performance under strict
serializability (labeled as STRICT SER), sequential serializ-
ability (labeled as SEQ SER), and serializability (labeled as
SER) almost coincide. This is because, in a low latency network
environment, like LAN, the effect of requesting timestamps from
timestamp oracle service on the overall performance is negligi-
ble. The main cost comes from doing concurrency control, which
is roughly the same under strict serializability and sequential
serializability.

We finally report the experimental results over a simulated
WAN network in Fig. 17(c) and (d). We find that sequential
serializability and serializability almost perform the same, and
their throughput is up to 4.53 × higher than that of strict
serializability. The reason is that, in a high latency network
environment, like WAN, the cost of requesting timestamps is
comparable to that of doing concurrency control, and probably
becomes a dominant factor to the overall performance (could
be verified in Fig. 17(d)). Besides, by varying the number of
client connections from 8 to 128, sequential serializability and
serializability take an increasingly significant benefit against
strict serializability. Yet, by adding more client connections,
the contentions among transactions become the bottleneck and
cause the performance to drop.

F. Summary

We summarize the major experimental findings below:
� We show the efficiency and effectiveness of the adaptive

timestamp interval selection method, which reduces the
abort rate by up to 21.96% and improves the throughput
by up to 91.42% (Section VII-B).

� We confirm that BDTA outperforms the state-of-the-art
concurrency control algorithms, including dynamic order-
ing and static ordering algorithms (Section VII-C and D).

� We recommend using strict serializability in the low la-
tency network, e.g., LAN, and sequential serializability in
the high latency network, e.g., WAN (Section VII-E).

VIII. RELATED WORK

Our study relates to formalizing consistency and isolation
levels, as well as distributed concurrency control algorithms.

In ACID databases, isolation levels are typically defined by
disallowing certain kinds of data anomalies. The ANSI/ISO
SQL-92 specifies four data anomalies (e.g., dirty write/read)
and defines four isolation levels accordingly [51]. By arguing
that the definitions in SQL-92 lack mathematical formalization
and could incur ambiguous interpretations, a few works make
formal re-definitions of data anomalies [1], [3], [15], [19], [43].
Much effort has been devoted to the identification of new data
anomalies, including skewed read/write [3], aborted read [53],
intermediate read [53], etc. There are quite a few works to
model data consistency from different perspectives, e.g., result
visibility [43], state matrix [15], dependency graph [1], [2],
and abstract execution [11]. Recently, there is an increasing
interest in imposing consistency models [11], [24], [27], [28],
[49] on isolation levels. Quite a few works [12], [18], [48] impose
additional constraints like the causal-related order on snapshot
isolation [3]. Salt [52] imposes the eventual consistency [11] on
ACID transactions to provide BASE transactions. To be more
related, strict serializability [40] imposes the real-time order on
serializability. Strong session serializability [16] imposes the
program order on serializability. Lynx [56] studies serializability
with the read-your-writes order. These works impose partial
orders on serializability in a case-by-case manner. We model
multi-level serializability to provide a systematic analysis of
consistency levels over serializability. It is worth mentioning that
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strong session serializability [16] and Lynx [56] can be reduced
to sequential serializability.

Distributed concurrency control algorithms are typically di-
vided into two categories: (1) static ordering algorithms and
(2) dynamic ordering algorithms. The first category determines
the order of transactions statically. T/O [4] orders transactions
based on their start timestamps. OCC [26] and its variants like
Silo [47] determine the order based on either the validation point
or the serialization point. 2PL [4], [19] orders transactions by
the first granted lock on conflict data items. Calvin [45] uses
a deterministic method to order transactions before execution.
Imposing T/O over MVCC [39] can potentially support sequen-
tial serializability by the monotonic increasing local timestamp
and strict serializability by the timestamp oracle [38]. Yet,
the static ordering could cause a high abort rate due to their
strict order requirements, which is verified in our experiments.
On the contrary, the second category determines the order of
transactions dynamically. Similar to BDTA, they determine the
order by adjusting the timestamp intervals of transactions. Bok-
senbaum et al. are the first to use DTA in distributed concurrency
control [9]. MaaT [31] and Sundial [55] are single-version based,
and employ logical timestamps to do the adjustment. TCM [30]
integrates DTA into the multi-version 2PL protocol, which is
mainly designed for centralized databases. TCM requires all
concurrent transactions to shrink their timestamp intervals upon
a conflict, which could incur unnecessary adjustment overhead
for aborted transactions. BDTA eliminates this overhead by
only adjusting other transactions’ timestamp intervals during the
validation. BDTA is different from the other algorithms. First,
BDTA adjusts timestamp intervals to preserve required orders
in multi-level serializability. Second, BDTA adopts the adaptive
timestamp interval selection, leading to a lower transaction abort
rate.

IX. CONCLUSION

In this paper, we study serializability from different consis-
tency perspectives and formalize multi-level serializability. To
support multi-level serializability, we propose a novel concur-
rency control algorithm called BDTA. BDTA can dynamically
order serializable transactions and preserve partial orders among
transactions required in the consistency models. We integrate
BDTA into Greenplum, and release the implementation as open
source. We conduct extensive experiments to show the necessity
of introducing multi-level serializability and the performance
gain of BDTA compared with state-of-the-art concurrency con-
trol algorithms.
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