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Abstract    Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification,

plays  an  important  role  in  many  data  analysis  tasks,  such  as  data  cleaning,  schema matching,  and  keyword  search  in

databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information is-

lands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to

figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification prob-

lem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated

with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute

from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the perfor-

mance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the

labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and con-

struct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Exten-

sive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art ap-

proaches by a large margin, up to 6.14% and 25.17% in terms of macro average  score, and up to 0.28% and 9.56% in

terms of weighted  score over high-quality and low-quality datasets respectively.

Keywords    attribute semantic type (AST) identification, context-aware, semantic embedding, knowledge base embed-

ding

 
 

1    Introduction

R

R

Given a relation , attribute semantic type (AST)

identification targets to identify the semantic types of

attributes  in .  AST identification has a wide range

of applications in data cleaning[1], schema matching[2, 3],

keyword search  in  databases[4] and so  on.  For  exam-

ple,  in  schema  matching  that  aligns  attributes  with

the same meanings from multiple relations, AST iden-

tification  is  used  to  first  figure  out  the  meaning  of
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each attribute, denoted as the semantic type, in rela-

tions.

Processing  AST  identification  poses  some  chal-

lenges.  First,  due  to  a  lack  of  unified  naming  stan-

dards  across  prevalent  information  systems,  at-

tributes of relations in the databases are often named

at  will.  Therefore,  it  is  challenging  to  figure  out  the

semantic types of attributes since attributes with dif-

ferent names can be referred to as the same semantic

types,  while  attributes  with  the  same  names  can  be

referred  to  as  different  semantic  types.  Second,  in

many  cases,  like  web  tables,  attributes  in  the  rela-

tions do not have explicit names. In these cases, it is

not applicable to figure out the semantic types of at-

tributes  based  on  the  attribute  names.  Third,  the

same attribute under different kinds of context can be

even referred to as quite different semantic types due

to the finer granularity. For example, name under the

teaching  context  refers  to  teachers'  names,  while

name under  the  studying  context  refers  to  students'

names. However, in such cases, it is challenging to in-

fer  the  semantic  types  only  based  on  the  name  at-

tributes.

Thus  far,  existing  approaches  that  process  AST

identification  are  divided  into  three  categories,  rule-

based  approaches,  knowledge-based  approaches,  and

feature-based  approaches.  Rule-based  approaches[5–7]

solve  the  problem by  defining  specific  rules  over  the

attribute  values  and doing regular  expression match-

ing or dictionary lookup to identify ASTs. Rule-based

approaches  are  applicable  to  well-formed  attribute

values, e.g., e-mail address and gender,  and they suf-

fer from regular attribute values, which are often the

cases  in  reality.  Alternatively,  knowledge-based  ap-

proaches[4, 8–10] utilize external knowledge from the In-

ternet  or  existing  knowledge  bases,  and  develop  rea-

soning algorithms to facilitate the judgment of ASTs.

It  is  worth mentioning that,  due to the gap between

the  applications  and knowledge  bases,  it  is  often  the

case  that  a  corresponding  match  cannot  be  found  in

knowledge bases to assist AST identification, especial-

ly  for  the  labeled  attribute  types  with  few

instances[10].  More  flexibly,  feature-based

approaches[11–13] abstract  the  syntax  and  semantic

characteristics  based on the  attribute  values  and ap-

ply  the  classification  models  to  identify  ASTs  with

similar  or  various  characteristics.  Although a  variety

of  feature-based  approaches  have  been  proposed  to

improve the effectiveness of AST identification, there

are  still  two  major  challenges  to  be  tackled.  On  one

hand, as discussed above, the same attribute with dif-

ferent kinds of context can be referred to as quite dif-

ferent semantic types, like students' name and teach-

ers' names. It is difficult to distinguish them using ex-

isting attribute-wise feature-based approaches. On the

other hand, most feature-based approaches transform

the AST identification problem to a multi-class classi-

fication  problem;  however,  they  suffer  from  the  un-

known semantic  types,  i.e.,  the  semantic  type  of  the

predicted  attribute  does  not  exist  in  the  labeled  at-

tribute semantic types.

In this paper, we study the above issues and pro-

pose a context-aware method for the AST identifica-

tion based on schema context aware semantic embed-

dings and knowledge base embeddings. The main con-

tributions of our paper are as follows.

• Considering that attributes in the same relation

are  often  mutually  helpful  to  AST  identification,  we

propose a schema context aware (SCA) model, which

generates  semantic  embeddings  from  a  collection  of

relations associated with attribute values and schema

context  and  performs  well  on  assigning  the  semantic

type for a given attribute.

• To enhance the representation and alleviate the

problem  that  the  predicted  semantic  types  of  at-

tributes  may  not  be  labeled,  we  extract  embeddings

with  reference  to  entities  and  ontology  classes  in

knowledge  bases  and  construct  a  schema  context

aware  model  with  knowledge  base  enhanced  (SCA-

KB)  model.  For  attributes  with  unknown  types,  the

knowledge  base  embeddings  are  used  for  candidate

types generation.

• Extensive experiments over several real datasets

demonstrate that our SCA-KB model outperforms the

recently  state-of-the-art  approaches  by  a  significant

margin.  We  can  choose  the  corresponding  ensemble

approach  in  the  SCA-KB  model  according  to  differ-

ent data characteristics.

The  remainder  of  this  paper  is  structured  as  fol-

lows. Section 2 provides  a  literature  review  of  AST

identification. Section 3 formalizes the AST identifica-

tion problem to be studied in this paper. Section 4 in-

troduces  the  architecture  of  our  proposed  context-

aware  model  in  detail. Section 5 includes  the  experi-

mental  datasets,  model  implementation  details  and

evaluation metrics.  Experimental results and findings

are  presented  in Section 6 to  demonstrate  the  excel-

lent  performance  of  our  approach.  Finally, Section 7

summarizes  this  paper  and gives  the  future  work  di-

rections. 
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2    Related Work

AST  identification  for  relational  attributes  has

been  studied  for  several  years.  Broadly  speaking,  ex-

isting  approaches  are  divided  into  three  categories:

rule-based  approaches,  knowledge-based  approaches,

and feature-based approaches. 

2.1    Rule-Based Approaches

Rule-based approaches answer the AST identifica-

tion  problem  by  defining  domain-specific  rules  over

the  attribute  values  and  doing  regular  expression

matching  or  dictionary  lookup  to  identify  ASTs.

These  approaches  are  applicable  to  well-formed  at-

tribute  values,  e.g.,  credit  code,  e-mail  address,  gen-

der and zip code.

Some  existing  commercial  data  preparation  and

analysis  systems  (e.g.,  Google  Data  Studio[5],  Mi-

crosoft  Power  BI[6],  and  Trifacta[7])  define  heuristic

rules for AST identification. Based on the expert ex-

perience  for  type  customization,  the  rule-based  ap-

proaches  can  identify  attribute  types  efficiently  on

limited  attributes.  Considering  the  variety  of  ASTs

and  data  expressions  in  relations,  the  rule-based  ap-

proaches lack generality and scalability. 

2.2    Knowledge-Based Approaches

Knowledge-based  approaches  process  AST identi-

fication by mapping the attributes of the relations to

the entity types extracted either from Internet on the

fly or from knowledge bases (KBs)[14].

Venetis et al.[4] built a mapping from attributes to

a pre-defined set of labels based on the knowledge ex-

tracted  from  Internet.  With  Bing's  knowledge

graph[15],  Zhao and He[8] built  the mapping based on

the collected entity types and rich synonymous names

of known entities. Furthermore, using entities and on-

tology  classes  stored  in  existing  KBs,  e.g.,

DBPedia[16],  Freebase[17],  YAGO[18],  AST  identifica-

tion  could  be  resolved  by  referring  to  the  correspon-

dences  between  attributes  and  ontology  classes  with

strategies like majority voting[19]. Chen et al.[9] devel-

oped a novel KB lookup and reasoning algorithm for

property  feature  extraction  which  indicates  potential

relations between attributes and provided discrimina-

tive predictive information.

In reality, the above approaches make an implicit

assumption that each attribute value in relations has

a one-to-one mapping via exact matching to an enti-

ty  in  the  knowledge  base.  However,  due  to  the  so-

called  knowledge  gap,  introduced  by  typos  or  a  lack

of unified naming standards, it is often the case that

we  cannot  find  a  proper  entity  simply  based  on  the

underlying attribute values. Differing from knowledge-

based approaches, in this paper, we utilize entities in

the knowledge base, i.e., DBpedia, to generate partial

attribute features to predict the AST types instead of

the exact match to address this issue. 

2.3    Feature-Based Approaches

Attribute values with the same semantics tend to

have similar syntax and semantic characteristics. For

this  reason,  feature-based  approaches  typically  first

extract  semantic  characteristics  of  the  attribute  and

then  apply  classification  models  to  process  the  AST

identification problems based on the semantic charac-

teristics.

Ramnandan et  al.[11] used  Kolmogorov-Smirnov

(K-S)  test  and  Term  Frequency-Inverse  Document

Frequency  (TF-IDF)  to  characterize  the  numerical

and textual  data respectively.  Furthermore,  Pham et
al.[12] introduced the Mann-Whitney test and Jaccard

similarity  to  characterize  numerical  data  and textual

data,  and  then  trained  the  logistic  regression  and  a

random forest model for AST identification. As a ma-

jor  branch  of  machine  learning,  deep  learning  (DL)

yields  state-of-the-art  achievements  for  predictive

tasks  in  multiple  domains[20–23].  Sherlock[13] extracts

high-dimensional  features  including  character  distri-

butions,  pre-trained  word  embeddings,  self-trained

paragraph  embeddings  and  column  statistics  from

each  attribute,  and  trains  a  multi-input  deep  neural

network  for  type  prediction.  Chen et  al.[9] embedded

the phrase within a cell with a bidirectional recurrent

neural  network  and  an  attention  layer  (Att-BiRNN)

and learned attribute features and row features with a

convolutional neural network (CNN).

Feature-based approaches answer the AST identi-

fication problem in an attribute-wise  paradigm. Nev-

ertheless,  in  reality,  attributes  in  the  same  relation

are often mutually helpful for AST identification. For

this reason, we propose to answer the AST identifica-

tion problem in a relation-wise paradigm, i.e., we gen-

erate  relation-wise  embeddings  with  the  considera-

tion of schema context to predict AST in relations. 

3    Problem Statement

RWe  use  symbol  to  denote  an  underlying  rela-
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tion  which  consists  of  attributes,  where  each  at-

tribute  is  denoted  as , .  Besides,  let  sym-

bol  represent the list  of  values for attribute  in

relation  and  represent  the  attribute  value  ma-

trix of relation , i.e., . For our

purpose, we denote the semantic type of attribute 

as , where  is selected from a predefined attribute

semantic type collection .

R

AS

ti ai R

Problem  Statement.  Given  a  relation  with  at-

tribute value matrix , the problem of AST identifi-

cation is to figure out  for each  in . 

4    Context-Aware Method for Semantic Type

Identification

T

According to the problem statement in Section 3,

we can conclude that when the set  of ASTs is pre-

defined, the AST problem can be transformed into a

multi-class  classification  problem.  In  this  section,  we

introduce  our  context-aware  method  for  semantic

type  identification.  Firstly,  data  preprocessing  rules

are defined in Subsection 4.1 to generate candidate se-

mantic  type  set  and  high  quality  attribute-semantic-

type-labeled relations. In Subsection 4.2, we propose a

schema context  aware  (SCA)  model  to  learn  embed-

dings from a collection of relations associated with at-

tribute  values  and  schema  context  and  figure  out

ASTs  for  attributes  based  on  the  embeddings.  Fur-

ther,  to improve the performance for AST identifica-

tion,  especially when the predicted semantic types of

attributes are not included in the candidate semantic

type  set,  we  map  attribute  values  to  corresponding

entities in the knowledge base for KB embedding gen-

eration (Subsection 4.3) and construct a schema con-

text  aware  model  with  knowledge  base  enhanced

(SCA-KB) to get a stable and robust model (Subsec-

tion 4.4). 

4.1    Data Preparation

T

We formulate the AST identification problem as a

classification  task.  The  unlabeled  target  attribute  in

relations will be mapped to the most likely matching

semantics  in  the  predefined  candidate  type  set .

Therefore, the definition of types is particularly signif-

icant for the specific dataset. In this paper, we pre-de-

fine the disjoint candidate types and ground truth la-

bels of attributes by referring to the metadata like at-

tribute names of corresponding relational datasets.

�DATE�

⇒

In  addition,  in  order  to  adapt  to  case  differences

in different datasets flexibly, we uniformly identify at-

tribute  types  as  lowercase,  for  example,  converting

“Date”,  and other similar writing formats to

“date” case-insensitively. For attribute names consist-

ing of multiple words, we remove the spaces between

the words and concatenate them with the connecting

line, such as “birth Date”  “birth_date”.

T

T

According  to  the  type  definition  criteria  men-

tioned  above,  the  standardized  candidate  semantic

type set  can be determined manually. Labeling at-

tributes with reference to raw attribute names in rela-

tions and the corresponding standard type in  yields

high-quality  attribute-semantic-type-labeled  relations.

The  processed  data  examples  are  shown  in Table 1,

Table 2 and Table 3. 

4.2    Semantic  Embedding  with  Pre-Trained

Model

The  state-of-the-art  approach,  Sherlock[13],  ex-

tracts  attribute-wise  features  for  AST  identification

but  cannot  work  well  on  identifying  attributes  with

similar  characteristics  but  different  ASTs.  Consider-

ing that attributes in the same relations are often mu-

tually  helpful  to  AST  identification,  we  introduce  a

pre-trained language model  BERT (Bidirectional  En-

coder  Representations  from  Transformers)  to  gener-

ate semantic embeddings based on both attribute val-

ues and schema context. 

4.2.1    Column Content Aware Model

BERT  borrows  its  structure  from  transformer[24].

The architecture of bare BERT is an encoder with 12

identical  stacked  layers,  with  each  layer  taking  out-

puts  of  the  former  layer  as  inputs.  Each  layer  is  a

transformer  block,  making  up  of  two  sub-layers,  in-

cluding  a  multi-head  self-attention  mechanism and  a

position-wise  fully  connected  feed-forward  network.

Each  sub-layer  is  wrapped  by  residual  connection[25]

 

Table  1.    Example Book Relation for Attribute Semantic Type Identification

title author date price publisher

Echoes from Lane Field Bill Swank 1-Jun-99 $16.99 Turner Publishing Company

A's Essential Steve Travers 1-Apr-07 $9.99 Triumph Books

Endless Summers Jack Torry 1-Mar-96 $14.99 Taylor Trade Publishing

930 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4



and followed by layer normalization[26]. The output of

each sub-layer can be represented as (1). 

LayerNorm(X + Sublayer(X)), (1)

Sublayer(X)

X

where  is  the  function  implemented  by

the sub-layer itself and  is the input matrix of this

sub-layer.

zi

αi

Overall,  the self-attention mechanism is  the most

important part in BERT. Different from RNN, which

is  often  employed  in  sequence  modeling,  the  self-at-

tention  mechanism avoids  computation  along  the  in-

put and output sequences, with one hidden state sum-

marizing  precedent  inputs  in  evolution  step  by  step.

That is,  when calculating an output token vector ,

self-attention  allows  all  vectors  outputted  from  the

former  layer  to  be  attended  and  summed  up  with

weight coefficients  altogether. 

eij =
(Ei ·W Q) · (Ej ·W K)T√

dz
, (2)

 

αij =
exp eij

n∑
k=1

exp eik

, (3)

 

zi =
n∑

j=1

αij(Ej ·W V). (4)

W V

Ei Ej E

αij

eij

dz

W V W Q W K

In (4),  is  the parameter matrix transforming

 and .  Note  that  is  the  input  matrix  of  the

current attention head. Each weight coefficient  is

computed  using  a  softmax  function  (3),  where  is

computed  by  comparing  the  similarity  of  two  input

elements  by dot  production (2)  and  is  the dimen-

sion  of  the  input  and  output  vector  in  attention

heads. The division operation is known as scaled dot

product. ,  and  are all  parameter matri-

ces  for  linear  transformation.  The  three  matrices  are

unique for each attention head.

As  mentioned in Section 3,  with  the  definition  of

ASTs and the acquisition of high-quality attribute-se-

mantic-type-labeled  training  data,  we  transform  the

problem  of  AST  identification  into  a  classification

problem. To map an attribute to the vector space for

semantic  embedding  and  achieve  good  performances

on AST identification,  we focus  on fine-tuning based

on  the  pre-trained  BERT  model  for  AST  classifica-

tion  which  is  the  downstream  task  we  defined.  We

add  a  projection  layer  wrapped  by  tanh  activation

and a classification layer on the top of BERT to com-

pute the label probabilities (5). 

P = softmax(tanh(C ·W1 + b1)W2 + b2), (5)

C W1 ∈
Rdz×dz W2 ∈ Rdz×nlabels

b1 ∈ Rdz b2 ∈ Rnlabels

where  is  the  output  [CLS]  representation, 

 and  are matrices  for  linear trans-

formation, and  and  are correspond-

ing biases. All the parameters of BERT are fine-tuned

based on our training set with cross entropy.

As  the  input  token sequence  to  BERT may be  a

single  sentence  or  sentence  pair  packed  together  and

the “sentence” here can be an arbitrary span of con-

tiguous  text,  rather  than  an  actual  linguistic

sentence[27],  we  concatenate  the  attribute  values  to

form a sequence inputted to BERT and add a special

classifier token [CLS][28, 29] at the start of input value

sequence.  All  the  tokens  including  [CLS]  go  through

multiple self-attention layers in a fine-tuned BERT to

get  higher-level  representation  regarding  to  all  other

co-occurring tokens. Besides, for each layer, [CLS] at-

tends  to  all  the  positions  of  the  input  sequence  and

sums them together, which can be regarded as a sum-

marization  of  representations  from  the  former  layer.

Finally, at the top layer, [CLS] is chosen for semantic

embedding  of  the  inputted  attribute.  With  the  raw

representation of the training dataset, the fine-tuning

of  the  predefined  neural  network  is  performed,  so  as

to adjust the parameters of the model.  The architec-

ture  of  the  column  content  aware  (CCA)  model  is

shown  in Fig.1(a)①.  Briefly  speaking,  the  input  and

output of the model are shown in Fig.1(b). 

 

Table  2.    Example Production Relation for Attribute Seman-
tic Type Identification

name brand price

MacBook Pro 15.4 Apple $3 599.00

ThinkPad Helix 37014DU Lenovo $2 975.22

Alienware 17 ANW17 17.3 Dell $2 599.00

 

Table  3.    Example Movie Relation for Attribute Semantic Type Identification

movie year director genres time

High-Rise 2015 Ben Wheatley Action, Drama, Sci-Fi 112 (min)

Mercy for Angels 2015 K.C. Amos Action, Drama, Thriller 91 (min)

Barely Lethal 2015 Kyle Newman Action, Adventure, Comedy 96 (min)

Yue Ding et al.: Context-Aware Semantic Type Identification for Relational Attributes 931
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4.2.2    Schema Context Aware Model

Simply utilizing the attribute values is ambiguous

to  identify  attribute  semantics.  Since  attributes  with

similar values can be referred to as quite different se-

mantic types,  e.g.,  the author in Book (Table 1) and

the director in Movie (Table 3). The actual semantic

type  depends  on  the  theme  of  the  whole  relation,

which is inherent when the schema is defined and can

be  revealed  from  the  values  of  its  co-occurring  at-

tributes. To tackle this problem, we enhance the CCA

model  by leveraging the  schema information,  namely

schema context aware (SCA) model, to get more rep-

resentative embeddings and identify ASTs precisely.

The SCA model is motivated by the fact that the

context  plays  an  important  role  in  word  representa-

tion  learning.  For  all  the  word  embedding  models,

their  training  objectives  implicitly  follow  the  Harris'

Distributional Hypothesis[30] that can be stated as fol-

lows:  words  that  occur  in  similar  contexts  tend  to

have similar meanings[31], wherein “context” is regard-

ed  as  the  co-occurring  words  which  precede  and  fol-

low the target word within some distance. We extend

the  context  in  word  representation  learning  to  rela-

tions  and  introduce  the  schema  context.  For  an  at-

tribute with its semantics to be predicted, there often

exist  many  other  attributes  co-occurring  in  a  single

relation, and we then extend the Harris' Distribution-

al  Hypothesis  below: “Attributes  that  occur  in  simi-

lar  schema  contexts  tend  to  have  similar  semantic

types”.  The  schema  context  for  an  attribute  we  de-

fined refers to attributes co-occurring in the same re-

lation.  This  simplification  is  useful  especially  when

correlations  between  attributes  are  unknown  in  web

tables.

The  architecture  of  the  SCA  model  is  shown  in

Fig.2(a).  As  mentioned  above,  the  input  token  se-

quence to BERT can be two sentences packed togeth-

er. To combine the information of schema context, we

just need to keep the structure of the CCA model and

add one more “sentence” formed by concatenating the

schema  context  to  the  input.  Two  parts  of  informa-

tion,  including  the  single  column  content  and  its

schema  context  separated  by  a  special  token  [SEP],

are  fed  into  the  cross  encoder  BERT,  and  a  target

value  is  predicted.  Briefly  speaking,  the  input  and
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Fig.1.  Column content aware model. (a) Model architecture. (b) Input and output example.
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output of the model is shown in Fig.2(b).

After  fine-tuning  with  the  downstream  task  of

classification,  a  well-performed  classifier  can  be  ob-

tained and representations generated during classifica-

tion  are  high-quality  semantic  embeddings  for  at-

tributes.  With  comparison,  the  advantages  of  our

SCA model are as follows.

1) Adopting a fine-tuned BERT as feature extrac-

tor makes the entire training process become an end-

to-end  training  mode.  Furthermore,  with  WordPiece

tokenization (Byte Pair Encoding, BPE) adopted, the

problem of out-of-vocabulary (OOV) words is solved,

which is severe in Sherlock's[13] feature extraction pro-

cedure,  since  missing  values  may  yield  when  using

GloVe[32] for word embeddings or using PV-DBOW[33]

for paragraph embeddings.

2)  With  the  collection  of  attribute  values  and

schema  context,  our  model  generates  relation-wise

representations which implicit the theme of relations.

By doing this, attributes with similar values but quite

different semantics can be identified more precisely. 

4.3    Knowledge Base Embedding with

Entity Retrieval

In addition to characterizing the semantics  of  at-

tributes  with  the  language  model,  we  create  knowl-

edge base embedding (a.k.a. Knowledge Base Vector,

KBVec)  with reference  to  knowledge base  containing

complex  structured  and  unstructured  information.

KBVec utilizes prior knowledge in the KB to express

potential type characteristics of attribute values. Each

slot  of  KBVec indicates the possibility of  the sample

attribute belongs to a specific KB ontology class, and

the  dimension  of  the  raw  KBVec  depends  on  the

number  of  ontology  classes.  The  classes  defined  by

KB  have  hierarchical  relationships,  e.g., actor, ath-
lette, chef,  and dancer are  sub-classes  of person.

Therefore, in most cases, the values of each attribute

will  be  mapped  to  several  ontology  classes  with  par-

ent-child relationships, and the generated KBVec will

be high-dimensional and sparse. We further use Prin-

cipal  Component  Analysis  (PCA)  to  reduce  the  di-
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Input:

Column Contents: {Bill Swank, Steve Travers, Jack Torry}
Schema Context：
                       {Echoes from Lane Field, 1-Jun-99 $16.99， Turner Publishing Company},
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Fig.2.  Schema context aware model. (a) Model architecture. (b) Input and output example.
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mensionality  of  the  feature  space  and  minimize  the

feature loss during dimensionality reduction.

N

The  extraction  algorithm  of  KBVec  is  shown  in

Algorithm 1. For each attribute value in the input at-

tribute, the algorithm first retrieves the matched enti-

ties  in  the  knowledge  base,  and  obtains  all  ontology

classes  (including  all  parent  and  children  classes)  it

belongs to (line 5).  As the look-up by lexical  match-

ing  is  ambiguous,  the  maximum number  of  returned

results  is  set  to  to  avoid missing the right  entity.

After  obtaining  the  candidate  classes  that  the  at-

tribute  value  belongs  to,  we will  retrieve  the  slot  ID

of  each  candidate  class  in  KBVec,  and  enhance  the

representation  in  the  corresponding  slot  (lines  6–9).

Finally,  we  apply  normalization  to  facilitate  further

processing  and  obtain  the  raw KBVec  characterizing

the category features of attributes. In order to reduce

the noise interference caused by high-dimensional em-

beddings,  PCA is  used to  perform dimensionality  re-

duction  (lines  13  and  14).  Note  that  we  adopt  the

same PCA model for the training, validation and test

set in the same dataset, i.e., transforming the embed-

dings to the consistent dimension for further construc-

tion and application of the classification model.

Algorithm 1. Extraction of KBVec

Attrs clses

d N

Input: attributes with values ,  ontology classes  with
the size of , a maximum number of match entities 

KBV ecOutput: 
V ector1    = [ ]

attr Attrs2   for every  in  do

d V attr3 　   Initialize the -dimensional  for  with zero

val attr4 　   for every  in  do

N CandidateClasses val5 　　    Look up   for  in KB

cls CandidateClasses6 　　    for every  in  do

cls clses7　　　      Find the index of  in 

V8 　　　     Add 1 in the corresponding slot of 

9 　　    end for

V V ector10 　     Append  to 

11 　 end for
12   end for

V ector13  Apply z-score normalization to 

KBV ec
14  Perform dimensionality reduction with PCA to get
    

KBV ec15  return 

 

4.4    Schema  Context  Aware  Model  with

Knowledge Base Enhanced

In summary, we obtain the high-quality semantic

embedding with the SCA model, and extract the rep-

resentative  knowledge  base  embedding  with  the  de-

signed KBVec extraction algorithm.

To  improve  the  identification  performance  for

both the predefined types and the unknown types, we

conduct  ensemble  modeling  and  construct  the  SCA-

KB model. There are three ensemble approaches to be

considered.

AvgWV KBV ec

P Pbasic

Presult

Score  Ensemble.  Based  on  the  average  word  vec-

tor  ( )  of  the attribute  values  and ,

a  basic  multi-class  classifier  with  logistic  regression

(LR)  can  be  constructed②.  Applying  both  the  SCA

model  and the basic  classifier  for  AST identification,

we get two prediction results  and . The score

ensemble  approach  takes  an  average  of  them for  the

final decision  (6). 

Pbasic = LR([AvgWV ,KBV ec]),
 

Presult = (P + Pbasic)/2. (6)

C

KBV ec

Feature Ensemble with LR.  With the convention-

al  feature  fusion  approach,  we  concatenate  the  ex-

tracted  fine-tuned  semantic  embedding  (i.e.,  the

output  [CLS]  representation)  with  knowledge  base

embedding , and train a multi-class classifier

with LR to get the prediction probabilities (7). 

Presult = LR([C,KBV ec]). (7)

KBV ec

Feature  Ensemble  with  BERT.  In  this  ensemble

approach,  is concatenated with the generat-

ed semantic embedding in the SCA model during fine-

tuning,  so  as  to  adjust  the  parameter  of  the  model.

Compared  with  the  model  architecture  mentioned  in

Subsection 4.2, one more projection layer wrapped by

tanh activation is added to convert the fusion vector

to  the  original  dimension.  The  prediction  probability

can be represented as (8). 

Presult = softmax(tanh(tanh([C,KBV ec]W0+
b0)W1+b1)W2+b2),

(8)

W0 W1 W2

b0 b1 b2

where ,  and  are  all  matrices  for  linear

transformation,  and ,  and  are  their  corre-

sponding biases.  All  of  the parameters are fine-tuned

based on our training set. 

5    Experimental Setup

We  conduct  extensive  experiments  to  verify  the

effectiveness of our method. 
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②LR is a binary classification model which does not support the multi-class classification natively. Thus we adopt the one-ver-
sus-one strategy to split a multi-class classification into one binary classification problem for each pair of classes.



5.1    Datasets

3 : 1 : 1

Three datasets with different predefined semantic

types  are  chosen  to  verify  the  performance  of  our

model  and  the  ground  truth  labels  of  attributes  are

generated  with  reference  to  the  metadata  like  at-

tribute  names.  Multiple  samplings  based  on  the

datasets  yield  our  experimental  datasets  which  are

split into the training, validation and test set with the

ratio of . More details can be seen in Table 4.

Benchmark Dataset. The benchmark dataset (BM-

data)[34] for  entity  resolution  describing  information

about bibliography and e-commerce has canonical and

common  schemas  which  can  be  used  as  the  ground

truth labels of ASTs. According to the data prepara-

tion  process  mentioned  in Subsection 4.1,  eight  com-

mon types including author, description, manufactur-
er, name, price, title, venue, and year are defined.

Magellan Dataset. With the expansion of BMdata,

the Magellan dataset contains more relations extract-

ed  and  converted  from  data-rich  websites[35].  The

dataset  includes  relations  from  multiple  application

domains,  e.g.,  anime,  beer,  bibliography,  bike,  book,

e-commerce,  movies,  music,  and restaurants.  Similar-

ly,  the  Magellan  dataset  frequently  used  for  entity

resolution  is  of  good  quality,  and  thus  the  semantic

type  set  can  be  defined  referring  to  the  attribute

names in original relations easily. As a result, 71 com-

mon semantic types are defined after filtering.

Web Table Corpus. Except for the high-quality re-

lational data published by researchers, there are vast

amount  of  relations  embedded  in  the  web  providing

extensive  information  on  entities  from  various  do-

mains.  Referring  to  the  web  tables  (WebTable)  ex-

tracted from a couple thousand of websites[36], we ob-

tain 38 493 relations and define 83 informative seman-

tic types. Considering the multi-domain and low-qual-

ity  features  of  web  tables,  we  explore  whether  our

model can perform well on identifying ASTs which oc-

cur in diverse schema contexts.

The  above  datasets  include  both  well-structured

data  obtained  from  existing  research  work  and  rela-

tively  low-quality  data  captured  from  Internet  full-

text  documents,  which  have  heterogeneous  represen-

tations, misspellings and extraction errors. We evalu-

ate  the  performance  of  our  AST  identification  ap-

proach based on the three datasets.

Generally speaking, the number of samples in each

semantic  type  varies  a  lot.  As  shown in Fig.3 which

takes the Magellan dataset as an example, the imbal-

ances of per-type sample numbers form the “long-tail”
distributions,  where  the  common  attribute  types  oc-

cur  frequently  in  different  contexts  while  the  rare

types are only contained in specific context. The AST

identification  model  should  capture  and  distinguish

the differences between various types regardless of the

imbalance support for respective types. 

5.2    Model Implementation

2.0× 10−5

For semantic embedding, we implement the CCA

model  and  the  SCA  model  based  on  the  pre-trained

uncased BERT base model with PyTorch as backend,

and  tune  the  hyper-parameters  on  each  dataset  re-

spectively to construct the specific target model. Dur-

ing fine-tuning, most of the hyper-parameter settings

are kept the same as pre-trained in BERT, except for

the  batch  size,  learning  rate,  and  the  number  of

epochs.  Devlin et  al.[27] pointed  out  that  almost  all

tasks work well with a small batch size, a small learn-

ing rate, and a few training epochs. For optimal per-

formance, we fine-tune the BERT model on three TI-

TAN RTX GPUs with the batch size of 32, learning

rate of , and save the best model on the val-

idation  set  during  three  training  epochs.  In  addition

to the setting of above parameters, the maximum se-

quence length is set variously depending on the specif-

ic task. For BERT, the long input sequences are dis-

proportionately  expensive  because  attention  is

quadratic to the sequence[27]. Commonly, the length of

the input token sequence is limited to 512. To adapt

to  our  task,  for  the  CCA  model,  the  maximum  se-

quence  length  is  set  to  128,  while  for  the  sentence

longer than 128, it should be truncated to satisfy this

setting. For the SCA model, which takes not only val-

ues  of  attribute  as  input,  but  also  the  schema  con-

text in relations, the maximum sequence length is set

to 256 to contain both contents. Meanwhile, the pre-
 

Table  4.    Statistics of Experimental Datasets

Dataset Number of Relations Number of Average Attributes Number of ASTs Size of the
Training Set

Size of the
Validation Set

Size of the
Test Set

BMdata[34] 1 361 4 8 3 265 1 089 1 089

Magellan[35] 6 560 8 71 31 016 10 338 10 339

WebTable[36] 38 493 2 83 56 379 18 793 18 793
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defined  sentence  separator  ([SEP])  is  used  to  sepa-

rate the sequence pair. With a trick, when the length

of  the  sentence  pair  is  longer  than  256,  we  adopt  a

simple  heuristic  truncation  approach  to  truncate  the

longer  sequence  one  token  in  turn,  effectively  avoid-

ing  the  truncated  sequence  contains  more  informa-

tion  of  the  longer  sequence.  To  summarize,  the  pa-

rameters we set are listed in Table 5.

 
 

Table  5.    Experimental Parameters Setting

Parameter Value

Batch size 32

Learning rate (AdamW) 2.0 × 10–5

Number of epochs 3

Maximum sequence length 128/256

 

For knowledge base embedding generation, we in-

troduce  the  DBpedia  data[16] and extract  the  KBVec

with Algorithm 1.  When  retrieving  matched  entities

in KB with keywords, we use lookup service③ and set

the  maximum number  of  returned  results  to  5.  Fur-

ther, with the SPARQL query, we totally get 760 KB

ontology  classes  with  parent-child  relationships.

Therefore,  the  raw  KBVec  dimension  is  set  to  760,

and  each  slot  represents  one  specific  semantic  type.

After  obtaining  the  raw  KBVec,  we  introduce  PCA

for  dimensionality  reduction  and  set  the  number  of

components  to  keep  to  0.9  which  means  that  the

amount  of  variance  that  needs  to  be  explained  is

greater  than  90%.  For  performance  comparison,  we

choose  the  state-of-the-art  model,  Sherlock④ as  the

strong  baseline  model  for  AST identification  and  re-

produce  the  experiment  based  on  different  public

datasets.  Besides Sherlock, we embed attributes with

the  averaged  word  vector  based  on  a  word2vec

model[37] trained by the latest dump of Wikipedia ar-

ticles  and  train  a  basic  LR  multi-class  classification

model (AvgWV model) for AST identification. 

5.3    Evaluation Metrics

F1 F1

In order to measure the overall performance differ-

ences  between  AST  identification  models,  we  calcu-

late macro average  score and weighted average 

score  respectively  based  on  the  test  datasets.  Differ-

ent from treating each type equally, the latter weights

each type with supports (i.e.,  the number of samples

in  each  type)  and  can  better  evaluate  the  perfor-

mance when there are imbalanced type distributions.

Furthermore,  the  skewed  data  distributions  test

the consistency of models for detecting each type ac-

curately.  To  evaluate  whether  the  model  can  over-
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③Example: Top five related resources which have the keyword of “berlin”. http://lookup.dbpedia.org/api/search/KeywordSearch?
MaxHits=5&QueryString=berlin, April 2021.

 

④https://github.com/mitmedialab/sherlock-project, April 2021.

http://lookup.dbpedia.org/api/search/KeywordSearch?MaxHits=5&amp;QueryString=berlin
http://lookup.dbpedia.org/api/search/KeywordSearch?MaxHits=5&QueryString=berlin
https://github.com/mitmedialab/sherlock-project
https://github.com/mitmedialab/sherlock-project
https://github.com/mitmedialab/sherlock-project


MCC

MCC

M N

come  the  impact  of  long  tail  distribution  on  AST

identification  effectively,  Matthews  correlation  coeffi-

cient (MCC) and coefficient of variation (CV) are in-

troduced  for  detailed  per-type  evaluation.  Among

them, [38] is a measure of the quality of classifi-

cation  task  frequently  used  in  machine  learning.  In

the multi-class case,  can be defined in terms of

a  confusion  matrix  for  types.  To  simplify  the

definition,  the  following  intermediate  variables  are

considered.
 

tn =
N∑
i

Min, pn =
N∑
i

Mni,

c =
N∑
n

Mnn, s =
N∑
i

N∑
j

Mij,

tn n

pn n c

s

MCC

where  represents  the  times  type  truly  occurred,

 represents the times type  was predicted,  repre-

sents the total number of samples correctly predicted,

and  represents the total number of samples.  Based

on above definitions,  the multi-class  is  defined

as (9).
 

MCC =

c× s−
N∑
n

pn × tn√√√√(s2 −
N∑
n

p2
n)× (s2 −

N∑
n

t2n)

. (9)

MCC

F1

MCC

CV σ

µ CV = σ/µ CV

F1

CV F1

The  value for the multi-class case ranges in (–1, 1],

while the maximum value +1 represents a perfect pre-

diction.  Compared  with  other  metrics  like  score

and accuracy, the  metric which correctly takes

into account the ratio of the confusion matrix size is

more  informative  on  imbalanced  datasets[39].  More-

over,  is  the ratio of  the standard deviation  to

the mean , [40]. We compute  based on

the  score  of  each  type  in  the  test  set.  The  lower

the  value  of ,  the  less  divergent  the  per-type 

score and the more precise the estimate.
 

6    Results and Findings
 

6.1    Effectiveness of Semantic Embedding

With  the  CCA  model  and  the  SCA  model,  fine-

tuning BERT for the AST identification downstream

task, we obtain semantic embeddings which are capa-

ble of capturing the semantic similarity of attributes,

and also obtain well-performed classifiers. We use the

performance  of  the  classifier  to  explore  whether  se-

mantic  embeddings  are  effective. Table 6 shows  the

experimental results of different models based on the

three datasets. We use the bold font to highlight the

highest score for each metric.

F1

F1

F1

F1

The  results  tell  that  the  basic  model,  AvgWV,

achieves  a  basic  performance  for  AST  identification,

since  the  word2vec  model  cannot  generate  embed-

dings for OOV words, rare words or misspelled words.

To  fix  such  problems,  BERT  utilizes  WordPiece  for

tokenization. With comparison, the fine-tuned seman-

tic embeddings generated by the CCA model and the

SCA model perform much better than word2vec. Fur-

ther,  both two models  outperform Sherlock,  especial-

ly  the  SCA  model.  For  the  BM  dataset  which  con-

tains two application domains of bibliography and e-

commerce,  compared  with  Sherlock  the  CCA  model

brings an improvement of 4.80% for macro average 

score and 0.18% for weighted average  score, which

verify  the  effectiveness  of  semantic  embedding  ob-

tained  based  on  the  pre-trained  BERT  model.  Fur-

ther,  it  can  be  noticed  that  the  introduction  of

schema  context  performs  comparably  with  the  CCA

model,  which  brings  a  decrease  of  macro  average 

score of 1.37% and a slight improvement of weighted

average  score of 0.01%. With detailed analysis, the

relations  contained in  BMdata describe  two indepen-

dent  contexts  where  no  semantic  overlap  exists  be-

tween attributes from quite different schema contexts.

Thus,  the  features  of  attribute  are  enough  to  distin-

guish  and  identify  different  ASTs.  In  order  to  verify

the effect of context information for semantic embed-

 

Table  6.    Performance Evaluation for Semantic Embedding

Approach BMdata Magellan WebTable

Macro (%) Weighted (%) Macro (%) Weighted (%) Macro (%) Weighted (%)

AvgWV 85.88 98.44 70.00 69.46 46.52 75.79

Sherlock[13] 91.90 99.52 90.73 94.02 69.07 88.07

CCA 96.70 99.70 93.39 96.30 79.68 93.65

SCA 95.33 99.71 95.52 97.92 92.16 97.34

F1 F1Note: The macro average  score and the weighted average  score of different models under different datasets are listed above.
Among them, AvgWV is the basic model we construct, which embeds the attribute values with the averaged word vector and uses
LR for classification. Sherlock is a strong baseline model.
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F1

F1

F1

F1

ding, we introduce Magellan data, a multi-domain re-

lational data with richer topics on the basis of BMda-

ta.  As  introduced  in Subsection 5.1,  the  Magellan

dataset  involves  nine  domains  of  data  (e.g.,  animal,

book, and music) and the ASTs need to be restricted

and  identified  with  the  help  of  specific  context.  The

SCA  model  outperforms  Sherlock,  achieving  95.52%

vs  90.73%  macro  average  score  and  97.92%  vs

94.02% weighted average  score. Except for Magel-

lan  data,  the  high-quality  relational  data  which  is

mainly used for  entity resolution,  we also adopt web

table  corpus.  With  the  preliminary  consideration  of

attribute-wise  features,  the  baseline  Sherlock  model

performs poorly on this relatively low-quality web da-

ta  which covers  various  domains.  However,  our  SCA

model  can  distinguish  and  identify  features  between

different  ASTs  by  combining  schema  context  and

achieve a 23.09% gain in macro average  score and

a 9.27% gain in weighted average  score.

In  general,  both  the  CCA  model  and  the  SCA

model  can  generate  distinguished  and  representative

embeddings  for  further  classification.  Especially,  for

datasets  with  mixed  domains  where  attribute  types

cannot  be  determined  by  single  column  content,  the

SCA model  will  play  an  important  role  for  semantic

embedding generation. 

6.2    Effectiveness of Knowledge Base

Embedding

By retrieving  matched entities  and corresponding

ontology classes in DBpedia, we obtain KBVec which

represents  the  potential  type  characteristics  of  at-

tributes.  To  verify  the  effectiveness  of  KBVec,  we

concatenate it with the semantic embedding generat-

ed from different approaches and train classifiers with

LR for further performance evaluation.

F1

F1

F1

Experimental results in Table 7 demonstrate that

the introduction of KBVec can effectively improve the

effect  of  AST  identification.  Especially  for  the  basic

classifier  representing  the  attributes  with  the  aver-

aged  word  vector  (AvgWV),  the  macro  average 

score  and  the  weighted  average  score  are  in-

creased  by  8.74%  and  12.71%  respectively  based  on

the  Magellan  dataset.  Moreover,  to  reduce  the  im-

pact  of  high-dimensional  sparse  KBVec  on  classifica-

tion, we adopt PCA to transform the raw 760-dimen-

sional  KBVec  linearly  into  a  low-dimensional  space.

The results  tell  that  ensembling semantic  embedding

and  the  compressed  KBVec  as  input  features  of  the

LR classifier  can  obtain  the  best  classification  effect.

With  a  few  exceptions,  individual  results  show  that

the compressed KBVec performs worse  than the raw

760-dimensional  KBVec.  For  example,  for  CCA  se-

mantic  embeddings  of  dataset   Magellan,  the  intro-

duction of PCA causes a decrease of the macro aver-

age  score  of  0.05%.  With  analysis,  a  certain

amount of information is lost induced by dimensional-

ity  reduction  inevitably,  leading  to  the  reduction  in

performance.  Considering  that  the  introduction  of

PCA  reduces  the  computational  complexity  and  im-

proves the execution efficiency, it is necessary to find

the balance between execution effect and efficiency.

In general, the generated KBVec supplements the

semantic embedding and enhances the quality of em-

bedding.  On  the  other  hand,  when  the  semantics  to

be identified are un-predefined, KBVec can be used to

provide  candidate  types  to  help  semantic  inference

(Subsection 6.6). In addition, the adoption of PCA for

dimensionality  reduction  can  speed  up  modeling  and

overcome  the  impact  of  sparse  high-dimensional  fea-

tures. 

 

Table  7.    Performance Evaluation for Knowledge Base Embedding

Semantic Embedding
Approach

KBVec PCA BMdata Magellan WebTable

Macro (%) Weighted (%) Macro (%) Weighted (%) Macro (%) Weighted (%)

AvgWV / / 85.88 98.44 70.00 69.46 46.52 75.79

760 / 88.86 98.82 78.74 82.17 54.43 81.18

760 (29/37/38) 0.9 89.52 98.73 78.91 82.41 53.85 80.87

CCA / / 96.70 99.70 93.39 96.30 79.68 93.65

760 / 95.33 99.71 94.37 96.58 80.25 93.74

760 (29/37/38) 0.9 97.45 99.80 94.32 96.63 80.84 93.79

SCA / / 95.33 99.71 95.52 97.92 92.16 97.34

760 / 95.33 99.71 96.03 98.01 92.99 97.55

760 (29/37/38) 0.9 95.01 99.70 96.20 98.04 94.24 97.63

Note: With ablation experiments, we explore the effectiveness of knowledge base embedding. For each approach, the first row refers
to that the semantic embeddings are concatenated with no KBVec, while the second row refers to that the semantic embeddings are
concatenated with the raw 760-dimensional KBVecs and the third row refers to that the semantic embeddings are concatenated with
the compressed KBVecs,  the  numbers  in  brackets  indicate  the  dimension after  compression and the decimal  means the  minimum
amount of variance that needs to be explained with PCA.
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6.3    Effectiveness of Ensemble Approaches

With  comprehensive  analysis,  the  semantic  em-

bedding generated by the SCA model and the knowl-

edge  embedding  generated  by  our  extraction  algo-

rithm characterize attributes in relations well. In Sub-

section 6.2, the fine-tuned semantic embeddings of at-

tributes  are  concatenated  with  knowledge  base  em-

beddings as input to train a multi-class classifier cor-

responding  to  the  Feature  Ensemble  with  LR  men-

tioned  in Subsection 4.4.  We  explore  other  ensemble

approaches in the SCA-KB model in this subsection.

F1

F1

In Table 8,  Score  Ensemble  is  to  determine  the

prediction  results  with  the  averaged  probabilities  of

the SCA model and the basic model where the aver-

aged  word  vector  of  attributes  is  concatenated  with

KBVec.  Feature  Ensemble  with  BERT  concatenates

the compressed KBVec with BERT representation to

fine-tune the model for the downstream classification

task. Feature Ensemble with LR is the approach used

in Subsection 6.2 and the  best  results  in Table 7 are

listed.  Experimental  results  show  that  for  the  BM

dataset,  both  Score  Ensemble  and Feature  Ensemble

with LR perform well.  For the Magellan dataset and

Web dataset, only feature ensemble with LR achieves

good performance, e.g., compared with the SCA mod-

el  based  on  the  Magellan  dataset,  it  obtains  the

macro average  score of 96.20% higher than 95.52%

and  the  weighted  average  score  of  98.04% higher

than 97.92%. At the same time, it can be noted that

Feature  Ensemble  with  BERT  performs  poorly  on

three datasets. One potential reason is that too many

parameters in the neural network lead to over-fitting

with high variance.

In general, for attributes easy to distinguish, Score

Ensemble and Feature Ensemble with LR can be used

for semantic identification. While for the general data,

Feature  Ensemble  with  LR  ensembles  the  fine-tuned

semantic  embedding  and  knowledge  base  embedding

effectively  and  improves  the  identification  perfor-

mance. 

6.4    Per-Type Evaluation

F1

F1

F1

F1

F1

Taking the Magellan data as an example and tak-

ing the per-type  score of Sherlock as the baseline,

Fig.4 shows  differences  between  models.  The  SCA

model outperforms Sherlock in 46 out of 71 semantic

types  while  underperforming Sherlock in  four  seman-

tic  types.  Among  them,  the  score  of artist, asin,

month, review_count and so on is significantly higher

than that of Sherlock. In more details, as seen in Ta-

ble 9,  samples  with  the  ground  truth  label  of artist
are misidentified as restaurant, city, director, compa-
ny,  and category in  Sherlock.  While  our  SCA model

greatly reduces such errors, e.g., the  score of artist
is improved from 48.00% to 89.66%. Moreover, intro-

ducing  knowledge  base  embedding  improves  the  per-

formance  for  47  semantic  types  out  of  71  semantic

types with four types getting worse and 20 types get-

ting equal. Among them, on the basis of SCA seman-

tic  embedding,  the  introduction  of  external  knowl-

edge  especially  improves  the  identification  perfor-

mances  for album, song, width and so  on.  For  exam-

ple, in the SCA model, album is wrongly identified as

price, genres, song and copyright with the  score of

76.92%, while in Feature Ensemble with LR, album is

only  confused  with copyright or price with  the 

score of 89.66%. More examples can be seen in Table 9.

Our  SCA  model  generates  semantic  embeddings

by considering the context in relations which compen-

sate  the  lower-expressive  abilities  of  numerical  (e.g.,

asin, month,  and review_count)  and  confusing  types

(e.g., artist, director,  and authors).  Further,  taking

the  fine-tuned  semantic  embedding  and  the  com-

pressed knowledge base embedding into consideration,

our  Feature  Ensemble  with  the  LR  model  can  im-

prove  or  maintain  the  identification  performances  of

most ASTs. The knowledge base embeddings extract-

ed by retrieving DBpedia featurize the potential type

characteristics  of  attributes,  which  are  not  available

by semantic embeddings. 

 

Table  8.    Performance Evaluation for Ensemble Approaches

Approach BMdata Magellan WebTable

Macro (%) Weighted (%) Macro (%) Weighted (%) Macro (%) Weighted (%)

Sherlock[13] 91.90 99.52 90.73 94.02 69.07 88.07

SCA 95.33 99.71 95.52 97.92 92.16 97.34

Score ensemble 98.04 99.72 95.35 97.72 91.21 96.83

Feature ensemble with BERT 86.88 98.96 94.24 97.11 88.87 95.84

Feature ensemble with LR 97.45 99.80 96.20 98.04 94.24 97.63

Note:  The better  the performance is,  the more effective the ensemble approach will  be.  The underline highlights  the performance
better than that of the SCA model and the bold highlights the highest score for each metric in each specific dataset.
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6.5    Long-Tail Types Identification

F1

F1

The  experimental  datasets  we  used  show  clear

long  tail  distributions,  where  the  common  ASTs  ap-

pear  with  high frequency,  while  some ASTs are  less-

represented with few training samples.  With detailed

analysis  of  the  evaluation  results  in Table 8,  we  ob-

serve  that  the  improvements  of  macro  average 

score are generally higher than those of weighted av-

erage  score, which suggests that the significant im-

provements  come from boosting the accuracy for  the

less-represented types.

Our model tends to perform well in generalizing to

all ASTs especially the low-frequency types that com-

MCC

CV F1

MCC

MCC

CV F1

prise  the  long-tail.  To  evaluate  the  performance  for

long-tail type identification, we calculate  on the

overall  prediction  results  and  based  on  the 

score for each type. The experimental results listed in

Table 10 demonstrate that the ensemble model effec-

tively improves  with schema context and exter-

nal knowledge introduced. A higher  value close

to  1  indicates  that  the  experimental  result  is  a  per-

fect  prediction  compared  with  the  ground  truth  la-

bels  generated  from  the  column  headers.  Besides  a

lower  indicates  that  the  predicted  score  of

each category is  less  variant,  i.e.,  our model  has sta-

ble performances on long-tail datasets.

Further, taking Magellan data as an example, the
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Table  9.    Examples for Semantic Type Identification

Ground
Truth

Sherlock SCA Feature Ensemble with LR

Prediction F1 Score
(%)

Prediction F1 Score
(%)

Prediction F1 Score
(%)

width review_count, color, height, width, length 46.04 width, length, height,
weight

49.46 width, length, height,
weight

53.69

album title, author, company, summary, artist,
album, copyright

75.00 price, genres, song, album,
copyright

76.92 album, copyright,
price

89.66

artist restaurant, city, director, company, category,
artist

48.00 director, artist, album 89.66 artist, album 90.32

actors author, actors, director, creators 91.42 actors, director 99.60 actors 99.80

song title, song 84.21 song 91.67 song 100.00

F1

F1

Note: The table lists the prediction results (where the bold font indicates true prediction and the others are false prediction) and 
scores for samples with the specific ground truth labels. It should be noted that for types with only true prediction results and 
score less than 100%, all samples with the ground truth label of the specific type are identified correctly (i.e., the recall is 100%), but
there are still other samples that are identified as the specific type falsely.
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normalized  confusion  matrices  of  Sherlock  and  Fea-

ture Ensemble with LR are shown in Fig.5 and Fig.6

respectively,  where  the  vertical  axis  represents  the

true types of attributes which are sorted by the sup-

port of each type in the training set in descending or-

der,  and  the  horizontal  axis  indicates  the  prediction

types. The darker the color is, the closer the value in

the matrix is to 1, i.e.,  more attributes are predicted

as  the  type  corresponding  to  the  horizontal  axis.  It

can be clearly seen that values along the diagonal of

the  matrix  are  mostly  close  to  1,  which  means  that

both the baseline Sherlock model and the feature en-

semble  model  can  predict  most  ASTs  accurately.

With  detailed  comparison,  there  are  partial  non-zero

values in the lower left corner of the matrix in Fig.5,

that is, for the long-tail types with fewer samples, the

Sherlock model predicts them as high-frequency types

incorrectly.  While  in Fig.6,  such  false  prediction  in-

 

Table  10.    MCC and CV for Different Approaches

Approach BMdata Magellan WebTable

MCC CV MCC CV MCC CV

AvgWV 0.983 0.406 0.737 0.561 0.784 0.922

Sherlock[13] 0.993 0.137 0.937 0.170 0.871 0.404

SCA 0.996 0.078 0.979 0.132 0.973 0.202

Feature ensemble with LR 0.998 0.072 0.981 0.113 0.977 0.130

MCC CVNote: The table lists  and  for different approaches. The bold font is used to highlight the highest score for each metric.
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Fig.5.  Normalized confusion matrix of ASTs prediction with Sherlock.
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stances  are  significantly  reduced,  which  further

demonstrates that incorporating context and external

knowledge  can  effectively  alleviate  the  problem  of

lacking training data for rare types, and confirms that

our  model  can  effectively  boost  the  accuracy  for  the

long-tail types.
 

6.6    Case Study: Unknown Type Identification

We transform AST identification for relational at-

tributes  into  multi-class  classification  with  the  as-

sumption that all the semantic types to be identified

are predefined.  For unknown types which do not ex-

ist  in  the  training  set,  the  well-trained  classifier  just

returns  the  relative  most  likely  matching  semantics.

In order to provide more accurate candidate types for

such samples and enhance the robustness of our mod-

el, we conduct the unknown type detection according

to  the  maximum  predicted  probability  given  by  the

classifier and provide candidate classes with reference

to the extracted raw KBVec.

With  the  Efthymiou[41] data  used  in  [9]  and  the

SCA  model  trained  based  on  the  Magellan  data,  we

conduct  preliminary  experiments  for  unknown  AST

identification. Compared with the predefined types in

the Magellan dataset, Efthymiou contains both prede-

fined and un-predefined ASTs. In our ensemble mod-

el,  we regard the samples with low prediction proba-

bilities which are less than the threshold we define (in

this  case  study,  we  set  the  threshold  to  0.5)  as

anomalous  samples  with  unknown  types.  Further,

AST  identification  for  anomalous  samples  is  per-

formed by referring to the raw KBVecs and the candi-

date types corresponding to the non-zero slots in KB-

Vecs are highlighted. Table 11 shows examples for the
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Fig.6.  Normalized confusion matrix of ASTs prediction with Feature Ensemble with LR.
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case  study  and  four  candidate  classes  are  listed  for

each sample. For example, for anomalous sample 823

with the ground truth label of airport, the SCA mod-

el misidentifies it as city since attribute values of air-
port contain  confusing  city  names.  In  our  ensemble

model,  the  true  label airport is  highlighted  by  refer-

ring to the KBVec. 

7    Conclusions

In  this  paper,  we  presented  a  context-aware

method to solve the AST identification problem. The

main  idea  of  this  method  is  to  transform  the  AST

identification into a multi-class classification problem.

For this purpose, we proposed an SCA model which is

able to generate the embedding for each attribute and

figure out the AST for the attribute based on the em-

bedding. Our special design made the embedding cap-

ture the semantics of the target attributes, as well as

the  related schema context.  Since  the  actual  AST of

the  attribute  might  not  be  included  in  the  training

set, which will lead to that the SCA model could not

figure  out  the  semantic  types  properly,  we  proposed

an SCA-KB model which enhances the embeddings of

attributes  by  introducing  the  entities  and  ontology

types in the knowledge base. For this reason, we pro-

posed an SCA-KB model which enhances the embed-

dings of attributes by introducing the entities and on-

tology  types  in  the  knowledge  base.  Compared  with

the SCA model,  the SCA-KB model could figure out

the semantic  types  of  attributes  that  are  included in

the  knowledge  base  but  not  included  in  the  training

F1

F1

set.  We conducted extensive experiments and the re-

sults  demonstrated  that  our  context-aware  method

outperformed  the  state-of-the-art  approaches  by  a

large  margin,  up  to  6.14%  and  25.17%  in  terms  of

macro average  score,  and up to 0.28% and 9.56%

in terms of weighted average  score over high-quali-

ty and low-quality datasets respectively.

For  future  research,  we  will  further  explore  im-

provements  of  our  AST  identification  method  from

two  perspectives.  On  the  one  hand,  the  ontology

types in the knowledge base are hierarchical, while in

our SCA-KB model, the ontology types are used inde-

pendently in a flat manner. To fill in this gap, we will

attempt  to  enhance  the  embeddings  of  attributes  in

our  SCA-KB  model  by  preserving  the  hierarchical

context of ontology types. On the other hand, we will

try  to  improve  the  efficiency  of  our  context-aware

method.  In  the  current  design,  both  the  SCA  and

SCA-KB model are based on BERT, which has been

well  recognized  as  a  prohibitively  expensive  pre-

trained model.  To improve the efficiency, we will  at-

tempt to  optimize  the  used pre-trained model  by in-

troducing  weight  quantization[42],  knowledge  distilla-

tion[43] and  parameter  sharing[44],  which  are  orthogo-

nal to our work. 
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