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Abstract. Property graphs are becoming increasingly popular for mod-
eling entities, their relationships, and properties. Due to the compu-
tational complexity, users are seldom to build complex user-defined
integrity constraints; worse, the systems often do not have the capa-
bilities of defining complex integrity constraints. For these reasons, vio-
lation of the implicit integrity constraints widely exists and leads to
various data quality issues in property graphs. In this paper, we aim
to automatically extract abnormal graph patterns and efficiently mine
all matches in large property graphs to the abnormal patterns that are
taken as anomalies. For this purpose, we first propose a new concept
namely CGPs(Conditional Graph Patterns). CGPs have the capability
of modeling anomalies in the property graph by capturing both abnor-
mal graph patterns and the attribute (i.e., property) constraints. All
matches to any abnormal CGP are taken as anomalies. To mine abnor-
mal CGPs and their matches automatically and efficiently, we then
propose an efficient parallel approach called ACGPMiner (Abnormal
Conditional Graph Pattern Miner). ACGPMiner follows the generation-
and-validation paradigm and does the anomaly detection level by level.
At each level i, we generate CGPs with i edges, validate whether CGPs
are abnormal, and mine all matches to any abnormal CGPs. Further,
we propose two optimizations, pre-search pruning to reduce the search
space of match enumerations and a two-stage strategy for balancing the
workload in distributed computing settings. Using real-life graphs, we
experimentally show that our approach is feasible for anomaly detection
in large property graphs.

Keywords: graph · abnormal data · parallel

1 Introduction

The graph model has been showing its effectiveness in modeling entities and their
relationships in a wide spectrum of applications scenarios, like knowledge bases,
transportation graphs, social networks, etc. Due to the computation complexity
of graph models, it is seldom to build complex user-defined integrity constraints
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in large graphs [1]. Worse still, some integrity constraints are not trivial to be
expressed, e.g., a person is not allowed to have two nationalities with one as
Chinese, but is allowed to have two nationalities with one as “the United States”
and the other as “England”. Due to the above two reasons, violation of the
implicit integrity constraints widely exists and leads to various data quality
issues in the graph.

Example 1 (Motivation Example). Consider two real subgraphs G1, and G2

in Fig. 1(a), which are extracted from a classic knowledge graph YAGO [2]. G1

shows that two persons Bardas and Nikephoros are each other’s children, and
this modeling is obviously contradictory. G2 demonstrates that a person named
Preus holds both German and Norwegian nationality at the same time. This
modeling is also not correct because Norway does not allow dual citizenship.
Interestingly, although Norway does not support dual citizenship, some other
countries support dual citizenship, such as the United States and England. ��

Fig. 1. Abnormal subgraphs in YAGO and abstracted graph patterns

Thus far, most of the existing works [3–6] follow the defining-and-identifying
paradigm to do graph anomaly detection. Specifically, they first define abnormal
graph patterns and then perform graph pattern matching to identify subgraphs
that are graph isomorphic to any of the patterns. These subgraphs are consid-
ered anomalies. For example, we first define two graph patterns that are P1 and
P2 in Fig. 1(b), and then identify subgraphs that are graph isomorphic to either
P1 or P2 in a large graph, e.g., G1 and G2, which are considered as anoma-
lies. However, the defining-and-identifying paradigm has two drawbacks. On the
one hand, modeling anomalies simply using graph patterns is not adequate.
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For example, it is not correct that any matches to P2 are modeled as anoma-
lies. This is because, as repeatedly discussed, a subgraph G is considered as an
anomaly only when G is graph isomorphic to P2, and the attribute values (resp.
country) of vertices of G are confined to a pre-defined set of values, e.g., Norway.
On the other hand, the graph patterns need to be defined a priori. In reality,
defining the abnormal graph patterns is not trivial, and often, they are modeled
after collecting quite a few “manually-reported” anomalies. For example, patterns
P1 and P2 are modeled by the abstraction of manually-reported anomalies G1,
G2, and other isomorphic subgraphs can be identified by performing graph pat-
tern matching. Unfortunately, this manually-reported paradigm is incomplete,
leaving many more anomalies to be unrevealed.

To mine anomalies from a large property graph automatically and efficiently,
in this paper, we first propose a concept namely the conditional graph pat-
tern (a.b.a. CGP) that is able to model the anomalies properly. CGP cap-
tures the graph topology as well as the attribute value constraints and hence
compared with graph patterns, it takes a more expressive capability to model
anomalies. Take G2 in Fig. 1(a) for example. If we add an attribute constraint
x1.name =‘Norway’ on any match to the graph pattern P2, then no false posi-
tives of anomalies over Norway nationality are produced. We introduce a quan-
tifiable metric namely abnormality, based on which we are able to mine CGPs
that are considered as anomalies. Furthermore, to make CGPs useful in practice,
we propose ACGPMiner (Abnormal Conditional Graph Pattern Miner), an effi-
cient parallel approach to identifying all subgraphs in the property graph that
satisfy the requirements of CGPs. ACGPMiner combines pattern mining and
attribute discovery in a single process, designs various effective pruning strate-
gies to reduce the search space, and balances the workload in the distributed
compute settings using a two-stage strategy. Extensive experiments are con-
ducted on real-life graphs and the results show that our approach is feasible for
anomaly detection in large property graphs.

2 Problem Definition

Definition 1 (Property graph). A property graph G is modeled as a quad-
tuple (V,E,L, FA). (1) V is a set of vertices; (2) E is a set of edges, and E ⊆
V × V ; (3)each v ∈ V is labeled L(v) ∈ Θ and each e ∈ E is labeled L(e) ∈ Θ,
where Θ is an alphabet of the node and edge labels in graphs; (4) each vertex
v ∈ V is associated with a set A = {A1, . . . , An} of attributes (i.e., properties).
Attribute values of v are denoted as FA(v) = (A1, c1), (A2, c2), ..., (An, cn), where
ci (1 ≤ i ≤ n) is the attribute value of v over Ai.

Definition 2 (Subgraph, ∈). Given two graphs G1 = (V1, E1, L1, FA1) and
G2 = (V2, E2, L2, FA2), G1 is said to be a subgraph of G2, written as G1 ∈ G2,
iff (1) V1 ⊆ V2, E1 ⊆ E2; (2) for each vertex v ∈ V1, L1(v) = L2(v) and
FA1(v) = FA2(v); (3) for each edge (u, v) ∈ E1, L1(u, v) = L2(u, v).
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Definition 3 (Isomorphism, �). Two graphs G1 and G2 are said to be iso-
morphic, written as G1 � G2, iff there is a bijective function f : V1 → V2

satisfying: (1) for each vertex v ∈ V1, L1(v) = L2(f(v)); (2) for each edge
(u, v) ∈ E1, (f(u), f(v)) ∈ E2 and L1(u, v) = L2(f(u), f(v)).

Definition 4 (Graph pattern). A graph pattern is a graph P [x̄] = (VP , EP ,
LP , u), where (1) VP (resp. EP ) is a set of vertices (resp. edges); (2) LP is a
function that assigns labels to each vertex v ∈ VP (resp. edge e ∈ EP ); (3) x̄ is
a list of variables, and (4) u is a bijective mapping from x̄ to VP that assigns a
distinct variable to each vertex v ∈ VP .

Definition 5 (Graph pattern matching). A match of a graph pattern P in
the graph G is a subgraph G1 of G that is isomorphic to P , i.e., G1 ∈ G and
G1 � P .

Example 2 Figure 1 shows two graph patterns: P1 and P2. (a) P1[x0, x1] describes
two persons x0 and x1 who are each other’s children. In P1, 1) VP are two vertices
and EP are two edges; 2) LP assigns the label “person” to both two vertices and
the label “hasChild” to both two edges; 3) x̄ contains two variables x0 and x0;
and 4) u maps x0 to the left vertex and x1 to the right vertex in P1. A match
of the pattern P1 in G1 is x0 → v0 and x1 → v1. (b) Similarly, P2[x0, x1, x2]
indicates that a person x0 is a citizen of both country x1 and country x2. A
match of pattern P2 in G2 is x0 → v2, x1 → v3 and x2 → v4. ��

Graph isomorphism verifies whether two (sub)graphs have an identical struc-
ture (i.e. topology). Given a set of (sub)graphs G = {Gi, G2, ..., GN}, the iso-
morphism relation divides G into equivalence classes. Each class is abstracted as
a graph pattern and subgraphs belonging to the same class are graph isomorphic
to each other. In this way, a graph pattern can be considered as a template of
all isomorphic subgraphs and a subgraph is considered as an instance (match) of
its pattern. However, graph patterns do not contain any attribute information
which is required in property graphs. To address this issue, we introduce the con-
ditional graph pattern, given in Definition 6, to impose the attribute constraint
on the graph pattern.

Definition 6 (Conditional graph pattern). A conditional graph pattern
(a.b.a. CGP) is defined as P [x̄](X), where P [x̄] is a graph pattern and X is
sets of conditions of x̄. A condition has the form of (x.A, c), where x is a vari-
able in x̄, A denotes an attribute, and c is the attribute value attached to x over
A.

Definition 7 (Conditional graph pattern matching). A match of a CGP
P [x̄](X) in the graph G is a subgraph G1 of G that 1) is isomorphic to P and
2) satisfies all conditions in X.

In a CGP P [x̄](X), X can be ∅, which can be seen as a particular conditional
graph pattern without additional conditions, i.e., a simple graph pattern. More-
over, to reduce excessive conditional literals, we select a set of active attributes
from G that are of users’ interest or are attributes contained in most entities.
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Example 3 (1) Consider a CGP P1[x0, x1](∅). The condition of this CGP is
empty thus it can be targeted as a graph pattern. (2) Consider a CGP
P2[x0, x1, x2] (x1.name = ‘Norway′). The condition of this CGP is attached to
the variable x1, which limits the attribute “name” to the value ‘Norway’. Com-
pared to P2 depicting the structure that one person has two nationalities, This
CGP additionally requires attribute constraint that the person’s one nationality
is Norway. With the above CGPs, we can capture the abnormal subgraphs G1

and G2 in Fig. 1. ��
In order to measure the degree of anomaly of CGPs, we put forward the

concept of abnormality. Before introducing the concept of abnormality, we first
introduce the concept of support to better explain the abnormality.

Definition 8 (Support). Consider a graph G, and a CGP ϕ = P [x̄](X), where
P has a pivot [7] z ∈ x̄. We define the support of ϕ as supp(ϕ,G) = |P (G,X, z)|,
where P (G,X, z) is the set of unique vertices corresponding to the variable z for
all matches of ϕ.

Given a graph G, a CGP ϕ and a support threshold λ, we say ϕ is frequent
in G if supp(ϕ,G) ≥ λ. It is intuitive to arise a simple solution that infrequent
CGPs can capture abnormal data. But if we consider the entire graph as an
instance of a CGP, it cannot occur more than once. It is not enough to simply
look for infrequent CGPs. In this paper, we propose the abnormality to mine
abnormal CGPs as follows.

Definition 9 (Abnormality). We define the abnormality of a CGP ϕ as:

abn(ϕ,G) =
supp(ϕ,G)
supp (ϕ′, G)

(1)

Here, ϕ is generated by adding an edge or a condition to a CGP ϕ′.

If the support of ϕ′ is very large, while the extended newly CGP ϕ has
little even no support, then ϕ most likely extends some unreasonable/abnormal
information. The abnormality describes the ratio of these two support degrees.
What’s more, abnormality is an additional condition that is applied in infrequent
CGPs. So formula (1) has an implicit condition that supp(ϕ,G) ≤ λ.

The Problem Statement. Given a property graph G, a support threshold
λ ≥ 0, and an abnormality threshold ε ≥ 0, the anomaly detection problem is to
extract abnormal CGPs ϕ over G with supp(ϕ,G) ≤ λ and abn(ϕ,G) ≤ ε and
then find all matches to any abnormal CGPs.

3 ACGPMiner Approach

3.1 Overview

To mine anomalies from a large property graph automatically and efficiently,
we propose ACGPMiner (Abnormal Conditional Graph Pattern Miner), a par-
allel approach to identifying abnormal subgraphs in the property graphs that
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satisfy the requirements of CGPs. As shown in Fig. 2, ACGPMiner employs the
master-worker paradigm in a multithreaded shared-nothing environment. Com-
munication occurs between the master and workers. The master manages the
underlying cluster resources and coordinates the execution of tasks. Workers
perform actual specific data processing tasks and report the status of tasks to
the master. Each worker in {w0, ..., wn−1} is a process running on multiple cores
in {c0, ..., cm−1}.

Fig. 2. An overview of ACGPMiner

The core technique of ACGPMiner is to discover abnormal CGPs, based on
which we can detect all abnormal subgraphs that match them. To mine abnormal
CGPs, ACGPMiner first finds graph patterns P in G, then generates CGPs
with P by adding conditions, and finally verifies whether CGPs are abnormal.
Specifically, ACGPMiner discovers abnormal CGPs level by level, from smaller
CGPs to larger ones. At each level i, it digs out abnormal CGPs with i edges
through four significant steps: (1) graph pattern generation to obtain a set of
graph patterns; (2) graph pattern matching to find matches for all graph patterns
that contribute to CGP candidates; (3) CGP generation to attach conditions to
graph patterns for producing candidate CGPs based on matches, and (4) CGP
verification for validating whether a CGP is abnormal. In our design, we model
graph pattern generation and CGP generation as generating tasks, and model
graph pattern matching and CGP verification as computing tasks. Considering
that the generating tasks are typically lightweight while computing tasks are
prohibitively expensive, ACGPMiner performs generating tasks in the master
node and conducts computing tasks in worker nodes in parallel, i.e., assigning
multiple workers to compute and execute together computing tasks in parallel.

3.2 Detail Design

We now elaborate on four major steps of ACGPMiner, as shown in Fig. 3.

Graph Pattern Generation. First, we perform graph pattern generation to
generate various graph patterns that are candidates for future CGP discovery.
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As stated previously, ACGPMiner runs level by level. At each level i, it first
generates new graph patterns with i edges. Each graph pattern P ′ expands a level
i−1 graph pattern P by adding a new edge (possibly with new nodes). The main
techniques of this step have been extensively discussed in numerous works [8–
11]. In this paper, we employ the CAM code [8] to guarantee the uniqueness of
graph patterns and the FFSM-Join and FFSM-Extend search strategies [11] to
generate candidate graph patterns quickly.

Fig. 3. Four major steps of ACGPMiner

Graph Pattern Matching. Next, we perform graph pattern matching to iden-
tify matches for all graph patterns contributing to CGP discovery. ACGPMiner
depicts matches in a materialized table view consisting of three sections: TID,
IDs, and ITEMS. TID is the order of matches; IDs characterize the match
as a list of unique IDs of vertices; ITEMS represent attribute information of
each match’s vertices as a list of attribute-value pairs. For instance, G1 is a
match of P1 in Fig. 1. It can be converted to a table view containing TID
with [0] (assuming it is the first match of P1), IDs with [v0, v1] and ITEMS
with [(x0 − name,Bardas), (x1 − name,Nikephoros)]. Furthermore, ACGP-
Miner provides an incremental method, which extends the stored matches to
obtain matches of a larger graph pattern. To obtain matches of P , ACGPMiner
performs a join operation Matches(P ′) �� Matches(e), where P is generated by
adding a frequent edge e to P ′. When doing the join operator, we also perform an
isomorphism check and an automorphism check to reduce the exploration space.
Since matches may involve large graph data and are therefore computation-
ally expensive, we perform them in parallel. Specifically, we decompose matches
across multiple workers, with each worker computing a portion of graph pattern
matches.
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CGP Generation. Based on matches of the graph pattern, ACGPMiner per-
forms abnormal CGP discovery. CGP discovery is comprised of two subtasks:
CGP generation and verification. We first perform CGP generation to obtain a
set of candidate CGPs. Recall that a CGP P [x̄](X) is a graph pattern P cou-
pled with conditions X. To introduce conditions to graph patterns, we utilize the
semantic attribute information of matches, i.e., the ITEMS. We build conditions
by starting the search from singleton X collected from the ITEMS part and pro-
gressing to a larger X through the set combination level by level. For instance,
we can add a singleton (x0 −name,Bardas) on P1 to generate a candidate CGP
P1(x0.name = ‘Bardas′).

CGP Verification. After gathering a set of candidate CGPs, ACGPMiner
performs CGP verification to check whether a CGP is abnormal. ACGPMiner
applies a vertical data format for fast computation. We convert the original data
to the vertical-layout data with the format {X: TIDLIST}. Here, X is a single-
ton item, and TIDLIST is a list of TIDs containing X. For example, the original
data of G1’s matches can be converted to {{X : [(x0 −name,Bardas)],TIDList:
[0]};{X : [(x1 − name,Nikephoros)], TIDList: [0]}}. Based on this design, for
getting matches of larger conditions X, we only need to collect the intersection
of TIDLIST of X’s subsets. The support of a CGP with conditions X is the size
of TIDLIST. Once we get the support of each CGP, we can check whether it is
abnormal based on the formula (1).

Pruning. To reduce the search space, we apply the below prunings: (1) Pruning
graph patterns: If supp(P,G) ≤ λ, we cease expanding a graph pattern P to
produce a larger graph pattern. It is based on the fact that the support of graph
patterns is anti-monotonic, meaning that as the graph pattern is expanded, the
support decreases. Similarly, no CGP discovery is made if supp(P,G) ≤ λ. (2)
Pruning candidate CGPs: ACGPMiner prunes candidate condition sets of length
k containing infrequent subsets of length k − 1. If X is a frequent condition set,
then all of its subsets must also be frequent.

3.3 Discussion

Two computing tasks dominate the cost of ACGPMiner. Both tasks require
efficiently generating matches, and there is potential for improvement.

First, there may exist a huge storage overhead in graph pattern matching
since we materialize matches of all graph patterns into table views. However,
we do not need to materialize matches for infrequent graph patterns since we
prune them without making CGP discovery. Inspired by this consideration, we
use a pre-search pruning strategy to only materialize matches of frequent graph
patterns. A detailed discussion is given in Sect. 4.1.

Second, it is necessary to balance the workload for computing matches in
parallel with multiple workers. As previously mentioned, we decompose matches
onto multiple workers, where each worker computes a portion of the matches.
A basic parallelization strategy allocates all workers to compute matches for a
graph pattern. However, not all workers are required to compute each graph



128 J. Hou et al.

pattern’s matches. The matches may be small and solvable by a few workers.
For this case, assigning all workers could incur significant communication and
synchronization costs and waste valuable resources. To solve it, we design a
two-stage strategy for load balancing. The discussion is elaborated in Sect. 4.2.

4 Optimizations

4.1 Pre-search Pruning

We use pre-search pruning to reduce the search space of ACGPMiner. The key
insight is that we only get all matches when the support is greater than the
threshold λ. To do so, we design a domain structure and employ a heuristic
search strategy for graph pattern matching on this structure.

Domain Structure. For a graph pattern P [x̄ = x0, x1, ..., xk], its domain struc-
ture of matches can be formalized as D = (Dx0 ,Dx1 , ...,Dxk

), where Dxi
is the

set of vertices that match xi induced by m(xi) for all matches m of P in G. For
each vertex in Di, we store its unique ID and attribute information ITEM. In
addition, we store its adjacent vertex for searching matches of larger graph pat-
terns. Semantically, Dxi

represents the set of domains of the variable xi. With
the domain structure, we can directly get the support of a graph pattern, i.e.,
the size of Dz where z is the variable representing the pivot pattern node.

Example 4 To better explain domain structure, we show the representation of a
graph pattern P [x̄ = x0, x1, ..., xk] in Fig. 4(a). Here, (1) {x0, x1..xk} are a set
of variables of x̄; (2) vx is a vertex of Dx1 , and (3) {Dxk

: vy} is vx’s adjacent
vertex, indicating that vx is connected to vy, which is in the domain Dk. As
shown in Fig. 4(b), the domain structure can represent P2’s match G2. ��

Dx0 Dx1 Dx2

v2 {Dx1:v3,Dx2:v4} v4 {Dx0:v2 }v3 {Dx0:v2 }

Fig. 4. Domain structure

Graph Pattern Matching. Based on the domain structure, we employ a
heuristic search strategy in graph pattern matching to reduce the search space.
Specifically, for each vertex v ∈ Dz, we only search for one match containing
v. This is due to the fact that our support only considers the size of the vertex
specified in the pivot pattern variable. Only if the support meets the threshold
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Algorithm 1: Graph pattern matching using domain structure
// get candidate domain structure

1 D(P )=D(P ′) �� D(e);
// calculate the support

2 for each vertex u of Dz where z is the pivot do
3 find a match m that assigns u to x ;
4 if not find then
5 Remove u from the domain D

6 support=size of Dz ;
// get all matches

7 if support ≥ λ then
8 for each vertex u of Dz do
9 get all matches consisting u;

during the pre-search are all matches containing the v searched. Otherwise, we
stop the discovery.

Algorithm 1 details how we use domain structure for incremental graph pat-
tern matching. For a candidate graph pattern P , we first get its candidate domain
storage structure by joining matches of P ’s parent graph pattern P ′ and its fre-
quent extended edge e (Line 1). We stitch together domain structures Di cor-
responding to the connected pattern vertex. Then we apply heuristics to get
support on the domain structure (Line 2–6). We iterate over each vertex u ∈ Dz

and search for a match that assigns u to z (Line 3). Note that we perform iso-
morphism and automorphism checks through searching matches. If the search is
unsuccessful, u is removed from Dz (Line 5). Hence, if these vertices are consid-
ered in the later pattern matching for getting all matches (Line 7–9), it precludes
any further search and reduces the search space. After traversing all vertices of
Dz, it is easy to get P ’s support, which is equal to the size of Dz (Line 6). Only
when the support is greater than the threshold λ, do we materialize all matches
(Line 7–9).

4.2 Load Balancing

We now discuss the two-stage load balancing strategy, as shown in Fig. 5. The
key insight is that candidates with high computational costs can be assigned as
many workers as possible, while candidates with low computational costs can
be assigned only a few workers. To do so, the first stage builds an approximate
computational cost model for deciding the number of workers to compute graph
pattern matches. The second stage generates efficient execution plans and assigns
workers to perform actual parallel computing. The detailed introduction is as
follows.

The First Stage. ACGPMiner generates a pool of jobs, where each job com-
putes matches of one specific graph pattern. In this stage, our goal is to decide
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how many workers should be assigned to process a job. To do so, we build an
approximate computational cost model which predicts the size of the matches of
the newly generated graph pattern. Recall that a graph pattern P ’s matches are
generated by a join Matches(P ′) �� Matches(e). Drawing on the cost estimation
of natural joins in relational databases, we build the approximate model in the
following.

C(P ) =
T (P ′)T (e)

Max(V (P ′, c), V (e, c))
(2)

Here, T (P ′) (resp. T (e)) means the count of matches of the candidate graph
pattern P ′ (resp. e). c is the connected pattern node between P ′ and e. V (P ′, c)
(resp. V (e, c)) means the count of distinct values in P ′ (resp. e) for the variable c.
On the basis of the predicted statistics, we can divide one job among n workers
for parallel processing. If the predicted cost C(P ) is more than a given maximum
cost θ, we need n = max(1, C(P )/θ) workers. Intuitively, if a worker bears data
that exceeds the threshold in the future, then the current data will be distributed
to other workers. More expensive jobs are assigned to more workers.

The Second Stage. In this stage, we utilize the statistics from the first stage
to generate fast execution plans with good load balance. Our goal is to utilize
workers as much as possible and not keep them idle for too long. To do so,
we handle similar jobs that require almost a similar processing time at the same
time. The master continually dispatches jobs to available workers until it becomes
empty. Dispatched jobs are prioritized by predicted size; smaller and similar
jobs are processed first. Once workers are assigned to jobs, they perform actual
parallel computations, i.e., parallel graph pattern matching or parallel CGP
verification.

Fig. 5. Two-stage load balancing strategy
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5 Evaluation

5.1 Experimental Setup

Implementation. ACGPMiner is implemented in Scala and is built on top of
Spark [12]. Spark deals with iterative algorithms in an efficient way and performs
the in-memory process to faster the execution. All experiments are conducted
on Apache Spark (version 3.1.2). Each executor is set with 5 GB memory and 2
cores. The memory of the driver program is 2 GB. The total cores of each worker
are maxed to 8, and the executors of each worker are maxed to 4.

Algorithms. We implement different configurations of ACGPMiner: (1)
ParAM: ACGPMiner with the optimizations of pre-search pruning and the two-
stage load balancing strategy; (2) DomainAM: ParAM with pre-search pruning
but without the two-stage load balancing strategy; (3) TableParAM: ParAM
without pre-search pruning but with the two-stage load balancing strategy; and
(4) BaseAM: ParAM without pre-search pruning and the two-stage load balanc-
ing strategy.

The Compared Method. The CGP is a new proposed definition to mine
abnormal data. Existing works were not aimed at mining abnormal CGPs. To
compare with other methods, we implement a Baseline following the idea pro-
posed in [7], which is one of the most current state-of-the-art methods under the
automatic paradigm. We make appropriate changes to fit our topic. Specifically,
we run in iterations and discover abnormal CGPs with i edges at each iteration i,
which works similarly to our BaseAM algorithm discussed above. The difference
is that it uses a brute-force algorithm in attribute discovery. It first lists all can-
didate CGPs and then iteratively validates each CGP. Our algorithm, however,
employs a vertical-data layout for fast validation and does not require scanning
through the dataset for each CGP validation. We also implement the Baseline
in Scala with Spark for a fair comparison.

Dataset. We use the following two real-life graphs. (a) YAGO: YAGO [2]
is a knowledge graph that augments WordNet with common knowledge facts
extracted from Wikipedia. We use YAGO with 18 entity types and 36 edge
labels. We pick up YAGO with different scales, controlled by the numbers |V | of
vertices varying in {0.5M, 1M, 1.5M, 2M} and numbers |E| of edges varying in
{1M, 2M, 3M, 4M}. Each entity has an average of 3 attributes in this dataset.
(b) DBpedia [13] is another well-known knowledge graph that aims to extract
structured content from the information created in Wikipedia. We use DBpedia
with 401 entity types, 5M vertices, 268 edge labels, and 14M edges. Each entity
in this dataset has an average of 4 attributes.

Hardware Setup. We conduct experiments in an in-house cluster with virtual
nodes running CentOS 7.4. Each node is equipped with two Intel(R) Xeon(R)
Platinum 8276 CPUs (28 cores × 2 HT), 8 × 128GB DRAM, and 3TB NVMe
SSDs.
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5.2 Experimental Results

We compare the result of our method ACGPMiner (with all optimizations, i.e.,
ParAM) to the Baseline using a variety of configurations. We next report our
findings.

Exp-1: Effect of Support Threshold λ. We first study the performance by
varying support threshold λ on YAGO and DBpedia datasets. We set k = 3
and n = 4 and report the results in Fig. 6(a) and 6(b). First, the running time
of both algorithms grows when the support threshold decreases. It is expected
that more graph data will be involved with a smaller support threshold. Second,
ParAM outperforms Baseline all the time. For YAGO, ParAM is 1.72x faster on
average and up to 1.93x than Baseline. For DBpedia, ParAM is 1.69x faster on
average and up to 1.84x than Baseline. It confirms that our proposed algorithm is
reliable. Third, the support threshold has smaller impacts on ParAM than Base-
line. For YAGO, along with the reduction in the support threshold, the running
time of Baseline increases by a factor of 1.46 compared to ParAM’s 1.1. For
DBpedia, Baseline suffers from 3.07x performance loss while ParAM needs 2.4x
more running time. Decreasing the support threshold results in an exponential
increase in the number of possible candidates and, thus, the exponential decrease
in the performance of the mining algorithm. A feasible algorithm should be able
to handle a small support threshold. ParAM is more suitable with a low sup-
port threshold since ParAM conducts the pre-search pruning which significantly
reduces the overhead of materialized pattern matching.

Exp-2: Effect of Pattern Size k. In this experiment, we evaluate the impact
of pattern size k. We study the performance on YAGO and DBpedia datasets
by varying k from 2 to 5. We set n = 4, λ = 2000 for YAGO, and λ = 9000 for
DBpeida. The results are shown in Fig. 6(c) and 6(d). First, both ParAM and
Baseline algorithms need more time to discover abnormal CGPs with larger pat-
terns. Since more CGPs are discovered with larger patterns. Second, matches
may be exponentially large since the graph structure is more complex as the
number of pattern edges increases. It is challenging to solve such cases. ParAM
outperforms Baseline by varying k on both two datasets. ParAM outperforms
Baseline by 10 times on average for YAGO and by 3.8 times on average for
DBpedia. It again affirms that our method is feasible for property graphs. Fur-
thermore, pattern size k has more negligible impacts on ParAM than Baseline.
For YAGO, the running time of ParAM has increased by 1.7x by varying k from
2 to 5. In contrast, the running time of the Baseline has increased by 17.2x. The
result is consistent with the DBpedia dataset.

Exp-3: Scalability with |G|. We evaluate the scalability by varying the size
of graph |G| = (|V |, |E|) from (0.5M, 1M) to (2.0M, 4M). We fix k = 3, n = 3
and λ = 8000. As shown in Fig. 6(e), it takes longer to discover abnormal CGPs
for larger graphs, as expected. The execution time of ParAM is 1.72x faster
than Baseline on average. When the scale of graphs grows to (2.0M, 4M), it
takes up to 1.97x less time to discover abnormal CGPs. Moreover, ParAM is
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Fig. 6. Performance evaluation of ACGPMiner

less sensitive to the scale of the graph. As the graph scale increases, the running
time of ParAM increases by 2.26x while the time of Baseline increases by 3.9x.

Exp-4: Parallel Scalability. In this experiment, we study the parallel scala-
bility by varying the number n of workers from 2 to 10 on YAGO dataset. We fix
k = 3 and λ = 8000. As shown in Fig. 6(f), the running time decreases with the
increment of workers. Parallel graph pattern mining and CGP verification dom-
inate the cost. Nonetheless, the parallel costs are reduced when more workers
are used. ParAM outperforms Baseline by 2.0x on average and up to 2.3x.

5.3 Optimization Analysis

In this experiment, we study the effect of various optimizations. We compare
the performance of various optimizations, i.e., the pre-search pruning and the
two-stage load balancing strategy, on YAGO and DBpedia datasets by varying
support thresholds. We set k = 3 and n = 3, and the result is shown in Fig. 7.

We next report our findings. First, for both YAGO and DBpedia datasets,
ACGPMiner performs best with all optimizations (denoted by ParAM) and per-
forms worst when no optimization is involved (denoted by BaseAM), as expected.
ParAM outperforms BaseAM 1.66x on average for YAGO and 1.68x on average
for DBpedia. Second, for both datasets, the optimization of the pre-search prun-
ing is more effective than the two-stage load balancing strategy. Compared to
BaseAM, DomainAM outperforms 1.62x while TableParAM outperforms 1.12x.
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Fig. 7. The effect of optimizations

It is because we reduce much more search space by applying the pre-search prun-
ing and thus do not need to require computing. Third, we can also observe that
the running time takes longer on DBpedia dataset compared to YAGO dataset.
It again confirms that the impact of |G| is consistent: the larger G is, the longer
ACGPMiner takes.

6 Related Work

Graph Pattern Matching. Given a pre-defined graph pattern, graph pattern
matching finds subgraphs in the data graph that are similar (graph isomorphism)
to the pattern. Graph pattern matching has been extensively studied in the past
decades. A straightforward way is to find matches based on subgraph isomor-
phism [3]. However, it suffers from huge computational overhead when the graph
is big. To reduce time complexity, other methods of a family of graph simulations
have been proposed, such as an incremental simulation method [4], a bounded
simulation method [5], and a distributed simulation method [6]. However, those
methods suffer from either poor expression or in a manual way. First, graph
patterns focus on graph structures and ignore the rich attribute information
of property graphs. Furthermore, they are required to define graph patterns in
advance, which is not trivial and often is developed with a lag after multiple
occurrences of abnormal data.

Automatic Discovery of Abnormal Data. Under the automatic paradigm,
there exist a few works applying data dependencies to mine abnormal data.
Data dependencies are traditionally used to enforce data quality in relations [14–
16], and more recently in graphs [1,7,17,18]. As opposed to data dependencies
implied in relations, graph dependencies impose the functional dependencies on
graph typologies. These works aim to discover laws behind the normal graph
data. Abnormal data is considered data that does not satisfy these dependencies,
which is not intuitive. Also, those works suffer from poor performance since
they either use brute force algorithms or do not provide parallel approaches for
supporting large-scale graphs.
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7 Conclusion

In this paper, we define CGPs to formalize abnormal graph data. CGPs specify
the graph structure and attribute conditions in a uniform manner, which can
provide a fine-grained paradigm as opposed to graph patterns. We also define
the abnormality to measure the degree of exception of abnormal CGPs. Based on
the above two notions, we formalize the discovery problem for mining abnormal
graph data. To make CGPs useful in practice, we propose a parallel approach,
ACGPMiner, for efficiently and automatically mining abnormal CGPs in large-
scale graphs. Moreover, we present various optimizations: (1) we design a domain
structure and employ a heuristic search strategy for pre-search pruning to reduce
search space; (2) we provide a two-stage strategy for load balance. We implement
our approach in Scala and build it on top of Spark. Using real-life graphs, we
experimentally confirm the effectiveness of our approach.
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